Git a
nd GitHub ... th
__then C

-

(,'/

Tea Enumﬁ"

W’l

\O\Ihemeth'qwu

builds

Millions of develof
maintainhe: goftwé
mostadvance:*. geve ;

==

Oﬂ

1
!"I:;’ - J—

@afgprogrammer
o

r

a | | | r 56+.|'11u'

https://unsplash.com/@afgprogrammer
https://unsplash.com/@synkevych
https://unsplash.com/@synkevych
https://unsplash.com/@pawel_czerwinski

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git and GitHub

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

Revision Control Systems

Problems often faced by programmers:
* Help! I've deleted my code! How do | ?
 How can | try out one way of writing this function, and iIf it doesn’t work?

e Help! I've introduced a subtle bug that | can’t find. How can |
since the last working version?

e How do | work with source code on ?

* How do | work (e.g., a COS 217 partner) on the same program?
* What changes did my partner just make?

e If my partner and | make changes to different parts of a program,
how do we ?

All of these problems are solved by revision control tools, e.g.:

g1t

Working Copy vs. Repository

WORKING COPY

* Represents single version
of the code

* Plain files (e.g, .c)

 Make a coherent set of
modifications, then
commit this version of code
to the repository

* Best practice: write a
meaningful commit message

4

REPOSITORY (or “repo”)

* Contains all checked-in
versions of the code

e Specialized format, located
in .git directory

e Can view commit history

e Can diff any versions

 Can check out any version,

by default the most recent
(known as HEAD)

We'll rarely use checkout except to
throw away local changes (see slide 6)

-

Relevant xkcd

COMMENT DATE
CREATED MAIN LOOP ETIMING CONTROL
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE CODE
HERE HAVE CODE.
APAAAAAA
ADKFISLKDFISDKLET
MY HANDS ARE TYPING LJORDS
HARRAAAAAANDS

AS A PROTECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

https://xkcd.com/1296/

J

https://xkcd.com/1296/
https://xkcd.com/1296/
https://xkcd.com/1296/

Local vs. Remote Repositories

LOCAL REPOSITORY f

* Located in .git directory

* Only accessible from the
computer where it lives

« Commit early, commit often:
you can only go back to
versions you’ve committed

e Can push current state (i.e.,
complete committed history)

state from remote repo
of a local repo to remote repo j

REMOTE REPOSITORY

* Located in the cloud
E.g., github.com

e Can clone remote repo into
local repo + working copy on
multiple machines

* Any clone can pull the current

COS 217 GitHub

We distribute assignment code through a github.com repo

 Butyou can’t push to our repo!

You should create your own (private!) repo for each assignment
* Two methods in git primer handout

* One clone on armlab, to test and submit

* If developing on your own machine, another clone there:
be sure to commit and push "up"” to github,
then pull "down" onto armlab

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

-

The C Programming Language

Who? Dennis Ritchie
When? ~197/2

Where? Bell Labs

Why? Build the Unix OS

Read more history:
https://www.bell-labs.com/usr/dmr/www/chist.html

https:///
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html

-
Java vs. C: History

This is what
we’re using
1960 1970 1972 1978 1989 / 1999 2010s 2020s
ANSI C89 ISO/ANSI
BCPL > B —>{C —> K&RC oo mlee —> C11, C18 —>| C23, C2Y

Algol f
\

Simula \ C++ > Java

LISP ——— > Smalltalk

11

C vs. Java: Design Goals

Build the Unix OS

L ow-level:; close to HW
and OS

Good for system-level
programming

Support structured
programming

Unsafe: don't get in the
programmer’s way

Language of the Internet

High-level; insulated from
hardware and OS

Good for application-level
programming

Support object-oriented
programming

Safe: can't step
“outside the sandbox”

Look like C!

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

-
Building Java Programs

$ javac MyProg.java Java compiler
(machine lang code)

HW (ArmLab)
. OS (Linux) |~
MyProg.java J javac | MyProg.class
(Java code)) (bytecode)

-

Running Java Programs

$ java MyProg

Java interpreter /
“virtual machine”
(machine lang code)

HW (ArmLab)

OS (Linux) |

[data \

> Java
A

{ data

|

MyProg.class
(bytecode)

-
Building C Programs

$ gcc217 myprog.c —o myprog C “Compiler driver”
(machine lang code)

HW (ArmLab)
. OS (Linux) |~
myprog.c myprog
[(C code) g Gzl { (machine lang code) }

-
Running C Programs

$./myprog myprog
(machine lang code)

HW (ArmLab)
OS (Linux) ||

[data > myprog { data }

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

-

Java vs. C: Portability

Program Code Type Portable?
MyProg.java ‘ Java source code ‘ Yes
myprog.c C source code Mostly
MyProg.class Bytecode Yes
myprog Machine lang code No

Conclusion: Java programs are more portable

(For example, COS 217 has used many architectures over the years,
and every time we've switched, all our programs have had to be recompiled!)

_ J

-

Java vs. C: Safety & Efficiency

Java
e null reference checking
* Automatic array-bounds checking
 Automatic memory management (garbage collection)
e Other safety features

C

e NULL pointer checking,
* Manual bounds checking
* Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C

> Cis for...car?

Q: Which best corresponds to the C programming language”?

23

Java vs. C: Details

Next 7 slides show C language details by way of Java comparisons.

For now, use as a comparative language overview reference to start the
simple "syntax mapping" stage of learning C, so that you're well
prepared to dive into the less rote aspects in the coming weeks.

-
Java vs. C: Details

Hello.java: hello.c:

public class Hello #include <stdio.h>
Overall { public static void main
Program (String[] args) int main(void)
Structure { System.out.printin({ printf("hello, world\n");

"hello, world"); return O;
} }

}
Building S javac Hello.java S gcc217 hello.c —o hello

S java Hello S ./hello
Running | hello, world hello, world

S S

24

-
Java vs. C: Details

byte //8 bits (unsigned, signed) char
short // 16 bits (unsigned, signed) short
Int I . :
egral types int //32 bits (unsigned, signed) int
long // 64 bits (unsigned, signed) long

. /* no equivalent */

-

Java vs. C: Details

Array bound .) Py ,
checking // run-time check /* no run-time check */

-
Java vs. C: Details

String s1+s2 #include <string.h>
concatenation sl+=s2 strcat(s1, s2);

Relational ops * | ==, I, <, >, <=, >= ==, I3, <, >, <=, >=

* Essentially the same in the two languages

-

Java vs. C: Details

switch (i) switch (i)
{ case 1: { case 1:

* Essentially the same in the two languages

-

Java vs. C: Details

while stmt * S <) while (i < 0)
statement; statement;

* Essentially the same in the two languages

-
Java vs. C: Details

{ {

Compound stmt statementl; statementl;
(alias block) * statement2; statement2;

} }

* Essentially the same in the two languages

-

Agenda

Our computing environment

e Lecture 1 and Precepts 1 and 2:
Linux and Bash

e Lecture 2: git

A taste of C
e History of C
e Building and running C programs
e Characteristics of C
e Example program: charcount

-
The charcount Program

Functionality:
* Read all characters from standard input stream
e Write to standard output stream the number of characters read

stdin stdout

L!nel charcount ={ 7 |
Line 2

(

The charcount Program

The program: charcount.c

-

charcount Building and Running

-

charcount Building and Running

S gcc217 charcount.c —o charcount
S ./charcount

Line 1

Line 2

I\D\

What is this?
What is the effect?
What is printed?

-

charcount Building and Running

-

charcount Building and Running

-

charcount Building and Running

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>

int main(void)
{ intc;
int charCount = 0;
¢ = getchar();
while (c != EOF)
{ charCount++;
c = getchar();
}
printf("%d\n", charCount);
return O;

T

No classes in the C language.

Execution begins at the
main() function

Block /**/
comments are
the only legal
ones in C90:

no //

-

Running charcount

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. */
int main(void)
{ imt c;
int charCount = 0;
¢ = getchar();
while (c != EOF)
{ charCount++;
c = getchar();
}
printf("%d\n", charCount);
return O;

Why int
not char?

'\

Run-time trace, referencing the original C code...

We allocate space for
¢ and charCount
In the stack section of

memory

Variables
must be
declared at
the top of a
block

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. */
int main(void)
{ intc;
int charCount = 0;
c = getchar();
while (c != EOF)
{ charCount++;
c = getchar();
}
printf("%d\n", charCount);
return O;

}

EOF is a special value,
distinct from all possible chars

getchar() tries to read char

from stdin

* Success = returns that
char value (within an int)

* Failure = returns EOF

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

Assuming c¢ # EOF,
we increment
charCount

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

We call getchar()
again and recheck
loop condition

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. */
int main(void) » Eventually getchar()
tintc returns EOF
int charCount = 0; . _
¢ = getchar(); * Loop condition fails
while (c |= EOF) o ;
RN S We C.aII prlntf()
c = getchar(); to write final
}
printf("%d\n", charCount); CharCount
return O;
}

-

Running charcount

Run-time trace, referencing the original C code...

charcount.c

#include <stdio.h>
/* Write to stdout the number of
chars in stdin. Return 0. */
int main(void)
{ intc;
int charCount = 0;
¢ = getchar();
while (c != EOF)
{ charCount++;
c = getchar();
}
printf("%d\n", charCount);
return O;

}

* return statement returns
to calling function

e return from main()
returns to _start,
terminates program

#include <stdlib.h>

Normal execution = 0 or EXIT _SUCCESS & to use these constants

Abnormal execution = EXIT_FAILURE

-
Coming up next ...

More character processing,

S

4

structured exactly how we'll
want you to design your

Assignment 1 solution!

Read the Al specs soon: you'll be ready to start after Lecture 3!

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/User:FrankieF
https://commons.wikimedia.org/wiki/User:FrankieF
https://unsplash.com/@christianlue

	Slide 1: Git and GitHub … then C
	Slide 2: Agenda
	Slide 3: Revision Control Systems
	Slide 4: Working Copy vs. Repository
	Slide 5: Relevant xkcd
	Slide 6: Local vs. Remote Repositories
	Slide 7: COS 217 🧡 GitHub
	Slide 8: Agenda
	Slide 9: The C Programming Language
	Slide 10: Java vs. C: History
	Slide 11: C vs. Java: Design Goals
	Slide 12: Agenda
	Slide 13: Building Java Programs
	Slide 14: Running Java Programs
	Slide 15: Building C Programs
	Slide 16: Running C Programs
	Slide 17: Agenda
	Slide 18: Java vs. C: Portability
	Slide 19: Java vs. C: Safety & Efficiency
	Slide 22: C is for … car?
	Slide 23: Java vs. C: Details
	Slide 24: Java vs. C: Details
	Slide 25: Java vs. C: Details
	Slide 26: Java vs. C: Details
	Slide 27: Java vs. C: Details
	Slide 28: Java vs. C: Details
	Slide 29: Java vs. C: Details
	Slide 30: Java vs. C: Details
	Slide 32: Agenda
	Slide 33: The charcount Program
	Slide 34: The charcount Program
	Slide 35: charcount Building and Running
	Slide 36: charcount Building and Running
	Slide 37: charcount Building and Running
	Slide 38: charcount Building and Running
	Slide 39: charcount Building and Running
	Slide 40: Running charcount
	Slide 41: Running charcount
	Slide 42: Running charcount
	Slide 43: Running charcount
	Slide 44: Running charcount
	Slide 45: Running charcount
	Slide 46: Running charcount
	Slide 47: Coming up next …

