
Git and GitHub … then C

1
@afgprogrammer

@synkevych

@pawel_czerwinski

https://unsplash.com/@afgprogrammer
https://unsplash.com/@synkevych
https://unsplash.com/@synkevych
https://unsplash.com/@pawel_czerwinski

Agenda

Our computing environment

•Lecture 1 and Precepts 1 and 2:

Linux and Bash

•Lecture 2: git and GitHub

A taste of C

•History of C

•Building and running C programs

•Characteristics of C

•Example program: charcount

2

Revision Control Systems

Problems often faced by programmers:
•Help! I’ve deleted my code! How do I get it back?

•How can I try out one way of writing this function, and go back if it doesn’t work?

•Help! I’ve introduced a subtle bug that I can’t find. How can I see what I’ve
changed since the last working version?

•How do I work with source code on multiple computers?

•How do I work with others (e.g., a COS 217 partner) on the same program?

•What changes did my partner just make?

• If my partner and I make changes to different parts of a program,
how do we merge those changes?

All of these problems are solved by revision control tools, e.g.:

 git3

Working Copy vs. Repository

4

WORKING COPY

• Represents single version

of the code

• Plain files (e.g, .c)

• Make a coherent set of

modifications, then

commit this version of code

to the repository

• Best practice: write a

meaningful commit message

REPOSITORY (or “repo”)

• Contains all checked-in

versions of the code

• Specialized format, located

in .git directory

• Can view commit history

• Can diff any versions

• Can check out any version,

by default the most recent

(known as HEAD)

git commit

git checkout
‡

‡

We'll rarely use checkout except to

 throw away local changes (see slide 6)

Relevant xkcd

5

https://xkcd.com/1296/

https://xkcd.com/1296/
https://xkcd.com/1296/
https://xkcd.com/1296/

Local vs. Remote Repositories

6

LOCAL REPOSITORY

• Located in .git directory

• Only accessible from the

computer where it lives

• Commit early, commit often:

you can only go back to

versions you’ve committed

• Can push current state (i.e.,

complete committed history)

of a local repo to remote repo

REMOTE REPOSITORY

• Located in the cloud

E.g., github.com

• Can clone remote repo into

local repo + working copy on

multiple machines

• Any clone can pull the current

state from remote repo

git push

git clone

git pull

COS 217 GitHub

We distribute assignment code through a github.com repo

• But you can’t push to our repo!

You should create your own (private!) repo for each assignment

• Two methods in git primer handout

• One clone on armlab, to test and submit

• If developing on your own machine, another clone there:
be sure to commit and push "up" to github,
then pull "down" onto armlab

7

Agenda

Our computing environment

•Lecture 1 and Precepts 1 and 2:

Linux and Bash

•Lecture 2: git

A taste of C

•History of C

•Building and running C programs

•Characteristics of C

•Example program: charcount

8

The C Programming Language

Who? Dennis Ritchie

When? ~1972

Where? Bell Labs

Why? Build the Unix OS

Read more history:

https://www.bell-labs.com/usr/dmr/www/chist.html
9

https:///
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/chist.html

Java vs. C: History

BCPL B C K&R C
ANSI C89

ISO C90

ISO/ANSI

C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk

C++ Java

C11, C18

2010s

Algol

Simula

This is what

we’re using

10

C23, C2Y

2020s

C vs. Java: Design Goals

C Design Goals (1972) Java Design Goals (1995)

Build the Unix OS Language of the Internet

Low-level; close to HW

and OS

High-level; insulated from

hardware and OS

Good for system-level

programming

Good for application-level

programming

Support structured

programming

Support object-oriented

programming

Unsafe: don’t get in the

programmer’s way

Safe: can’t step

 “outside the sandbox”

Look like C!
11

Agenda

Our computing environment

•Lecture 1 and Precepts 1 and 2:

Linux and Bash

•Lecture 2: git

A taste of C

•History of C

•Building and running C programs

•Characteristics of C

•Example program: charcount

12

HW (ArmLab)

OS (Linux)

Building Java Programs

MyProg.java

(Java code)
javac

MyProg.class

(bytecode)

$ javac MyProg.java Java compiler

(machine lang code)

13

Running Java Programs

$ java MyProg

MyProg.class

(bytecode)

Java interpreter /

“virtual machine”

(machine lang code)

HW (ArmLab)

OS (Linux)

data java data

14

HW (ArmLab)

OS (Linux)

Building C Programs

myprog.c

(C code)
gcc217

myprog
(machine lang code)

$ gcc217 myprog.c –o myprog C “Compiler driver”

(machine lang code)

15

Running C Programs

$./myprog myprog

(machine lang code)

HW (ArmLab)

OS (Linux)

data myprog data

16

Agenda

Our computing environment

•Lecture 1 and Precepts 1 and 2:

Linux and Bash

•Lecture 2: git

A taste of C

•History of C

•Building and running C programs

•Characteristics of C

•Example program: charcount

17

Java vs. C: Portability

Program Code Type Portable?

MyProg.java Java source code Yes

myprog.c C source code Mostly

MyProg.class Bytecode Yes

myprog Machine lang code No

Conclusion: Java programs are more portable

(For example, COS 217 has used many architectures over the years,

 and every time we've switched, all our programs have had to be recompiled!)
18

Java vs. C: Safety & Efficiency

Java

• null reference checking

•Automatic array-bounds checking

•Automatic memory management (garbage collection)

•Other safety features

C

• NULL pointer checking,

•Manual bounds checking

•Manual memory management

Conclusion 1: Java is often safer than C

Conclusion 2: Java is often slower than C19

C is for … car?

Q: Which best corresponds to the C programming language?

A.

B.

C.

Java vs. C: Details

Next 7 slides show C language details by way of Java comparisons.

For now, use as a comparative language overview reference to start the

simple "syntax mapping" stage of learning C, so that you're well

prepared to dive into the less rote aspects in the coming weeks.

23

Java vs. C: Details

Java C

Overall

Program

Structure

Hello.java:

public class Hello

{ public static void main
 (String[] args)
 { System.out.println(

 "hello, world");
 }
}

hello.c:

#include <stdio.h>

int main(void)

{ printf("hello, world\n");
 return 0;
}

Building $ javac Hello.java $ gcc217 hello.c –o hello

Running
$ java Hello

hello, world
$

$./hello

hello, world
$

24

Java vs. C: Details

Java C

Character type char // 16-bit Unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned, signed) char

(unsigned, signed) short

(unsigned, signed) int

(unsigned, signed) long

Floating point

types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean
/* no equivalent */
/* use 0 and non-0 */

Generic pointer

type
Object void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

25

Java vs. C: Details

Java C

Arrays

int [] a = new int [10];
float [][] b =
 new float [5][20];

int a[10];
float b[5][20];

Array bound

checking
// run-time check /* no run-time check */

Pointer type
// Object reference is an
// implicit pointer

int *p;

Record type

class Mine
{ int x;
 float y;
}

struct Mine
{ int x;
 float y;
};

26

Java vs. C: Details

Java C

Strings

String s1 = "Hello";
String s2 =
 new String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String

concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops * &&, ||, ! &&, ||, !

Relational ops * ==, !=, <, >, <=, >= ==, !=, <, >, <=, >=

Arithmetic ops * +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops <<, >>, >>>, &, ^, |, ~ <<, >>, &, ^, |, ~

Assignment ops
=, +=, -=, *=, /=, %=,
<<=, >>=, >>>=, &=, ^=, |=

=, +=, -=, *=, /=, %=,
<<=, >>=, &=, ^=, |=

* Essentially the same in the two languages
27

Java vs. C: Details

Java C

if stmt *

if (i < 0)
 statement1;
else
 statement2;

if (i < 0)
 statement1;
else
 statement2;

switch stmt *

switch (i)
{ case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

switch (i)
{ case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

goto stmt // no equivalent goto someLabel;

28
* Essentially the same in the two languages

Java vs. C: Details

Java C

for stmt
for (int i=0; i<10; i++)
 statement;

int i;
for (i=0; i<10; i++)
 statement;

while stmt *
while (i < 0)
 statement;

while (i < 0)
 statement;

do-while stmt *

do
 statement;
while (i < 0)

do
 statement;
while (i < 0);

continue stmt * continue; continue;

labeled continue

stmt
continue someLabel; /* no equivalent */

break stmt * break; break;

labeled break

stmt
break someLabel; /* no equivalent */

29
* Essentially the same in the two languages

Java vs. C: Details

Java C

return stmt *
return 5;
return;

return 5;
return;

Compound stmt

(alias block) *

{
 statement1;
 statement2;
}

{
 statement1;
 statement2;
}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method / function

call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

30
* Essentially the same in the two languages

Agenda

Our computing environment

•Lecture 1 and Precepts 1 and 2:

Linux and Bash

•Lecture 2: git

A taste of C

•History of C

•Building and running C programs

•Characteristics of C

•Example program: charcount

32

The charcount Program

Functionality:

•Read all characters from standard input stream

•Write to standard output stream the number of characters read

stdin

charcount
Line 1
Line 2

??

stdout

33

The charcount Program

The program:

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void) {
 int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF) {
 charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

34

charcount Building and Running

$ gcc217 charcount.c
$ ls
. .. a.out
$ gcc217 charcount.c -o charcount
$ ls
. .. a.out charcount
$

35

charcount Building and Running

$ gcc217 charcount.c –o charcount
$./charcount
Line 1
Line 2
^D

What is this?

What is the effect?

What is printed?

36

charcount Building and Running

$ gcc217 charcount.c –o charcount
$./charcount
Line 1
Line 2
^D
14
$

Includes visible

characters plus

two newlines
37

charcount Building and Running

$ cat somefile
Line 1
Line 2
$./charcount < somefile
14
$

What is this?

What is the effect?

38

charcount Building and Running

$./charcount > someotherfile
Line 1
Line 2
^D
$ cat someotherfile
14
$

What is this?

What is the effect?

39

Running charcount

Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

No classes in the C language.

Execution begins at the

main() function

40

Block /**/
comments are

the only legal

ones in C90:
no //

Running charcount

Run-time trace, referencing the original C code…

Why int

not char?

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

We allocate space for

c and charCount

in the stack section of

memory

41

Variables

must be

declared at

the top of a

block

Running charcount

Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

getchar() tries to read char

from stdin

• Success ⇒ returns that

char value (within an int)

• Failure ⇒ returns EOF

EOF is a special value,

distinct from all possible chars
42

Running charcount

Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

Assuming c ≠ EOF,

we increment

charCount

43

Running charcount

Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

We call getchar()

again and recheck

loop condition

44

Running charcount

Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

• Eventually getchar()

returns EOF

• Loop condition fails

• We call printf()

to write final

charCount

45

Running charcount

Run-time trace, referencing the original C code…

#include <stdio.h>
/* Write to stdout the number of
 chars in stdin. Return 0. */
int main(void)
{ int c;
 int charCount = 0;
 c = getchar();
 while (c != EOF)
 { charCount++;
 c = getchar();
 }
 printf("%d\n", charCount);
 return 0;
}

charcount.c

• return statement returns

to calling function

• return from main()

returns to _start,

terminates program

 #include <stdlib.h>

  to use these constantsNormal execution ⇒ 0 or EXIT_SUCCESS

Abnormal execution ⇒ EXIT_FAILURE
46

Coming up next …

More character processing,

structured exactly how we'll

want you to design your

Assignment 1 solution!

Read the A1 specs soon: you'll be ready to start after Lecture 3!
47

w:en:Creative
Commons Frankie

Fouganthin

@christianlue

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/User:FrankieF
https://commons.wikimedia.org/wiki/User:FrankieF
https://unsplash.com/@christianlue

	Slide 1: Git and GitHub … then C
	Slide 2: Agenda
	Slide 3: Revision Control Systems
	Slide 4: Working Copy vs. Repository
	Slide 5: Relevant xkcd
	Slide 6: Local vs. Remote Repositories
	Slide 7: COS 217 🧡 GitHub
	Slide 8: Agenda
	Slide 9: The C Programming Language
	Slide 10: Java vs. C: History
	Slide 11: C vs. Java: Design Goals
	Slide 12: Agenda
	Slide 13: Building Java Programs
	Slide 14: Running Java Programs
	Slide 15: Building C Programs
	Slide 16: Running C Programs
	Slide 17: Agenda
	Slide 18: Java vs. C: Portability
	Slide 19: Java vs. C: Safety & Efficiency
	Slide 22: C is for … car?
	Slide 23: Java vs. C: Details
	Slide 24: Java vs. C: Details
	Slide 25: Java vs. C: Details
	Slide 26: Java vs. C: Details
	Slide 27: Java vs. C: Details
	Slide 28: Java vs. C: Details
	Slide 29: Java vs. C: Details
	Slide 30: Java vs. C: Details
	Slide 32: Agenda
	Slide 33: The charcount Program
	Slide 34: The charcount Program
	Slide 35: charcount Building and Running
	Slide 36: charcount Building and Running
	Slide 37: charcount Building and Running
	Slide 38: charcount Building and Running
	Slide 39: charcount Building and Running
	Slide 40: Running charcount
	Slide 41: Running charcount
	Slide 42: Running charcount
	Slide 43: Running charcount
	Slide 44: Running charcount
	Slide 45: Running charcount
	Slide 46: Running charcount
	Slide 47: Coming up next …

