
CS 417: Operating Systems
Spring 2025: Practice Final Exam

This exam is closed book and closed notes, except for one double-sided page of notes. All cell phones
and laptops must be turned off. No calculators may be used.

You have three hours to complete this exam.

Part 1 True/False

For each statement below, circle whether it is true or false. You may add a brief explanation to
explain your reasoning (which may be used to award partial points).

Q1 Unlike processes, threads share an address space with other threads in the same process.

True False

Threads of the same process share the same address
 space, i.e. the same page table. Any memory accessible in one thread
 is also accessible in another thread.

Q2 Unlike processes, threads share register state and stack as other threads in the same process

True False

While threads can access all the same memory, the
 kernel keeps track of banked registers for each of them
 separately, and they are each allocated a separate stack so they
 can run independently.

Q3 Spin locks are simple but can result in starvations—the do not guarantee that a thread will
eventually aqcuire a lock.

True False

Q4 Semaphores require special kernel support to implement beyond mutexes and condition
variables.

True False

A semaphore can be implemented efficiently using a mutex, and condition variable and a counter.

Q5 Threads are always worse than events because threads have to be implemented in the kernel,
while events can be implemented in userspace.

True False

It’s neither true that threads are always worse than events, nor is it the case that threads have to be
implemented in the kernel.

Q6 An inode stores metadata for a file or directory, such is its size, access permissions, and where
its data is stored on disk.

True False

Part 2 Code Analysis

Read and analyze the following code snippet and answer the questions below. For multiple-choice
answers, you may show your work and provide a justification in the space provided. Justifications
will be used to award partial credit.

Producer/Consumer
The following code attempts to implement a common producer/consumer pattern in which a
bounded buffer is shared between producer threads and consumer threads. Unfortunately, it is
incorrect.

1 queue_t items[MAX];
2 cond_t fill, empty;
3 // Managed by queue_push and queue_pop to track how many items are
4 // currently in the queue
5 int numfull = 0;
6
7 int consume() {
8 mutex_lock(m);
9 if (numfull == 0) {

10 cond_wait(&fill, m);
11 }
12 int r = queue_pop(items);
13 cond_signal(empty);
14 mutex_unlock(m);
15 return r;
16 }
17
18 void produce(int value) {
19 mutex_lock(m);
20 if (numfull == MAX) {
21 cond_wait(&empty, m);
22 }
23 queue_push(items, value);
24 cond_signal(fill);
25 mutex_unlock(m);
26 }

Q7 What is one incorrect behavior that may result from the buggy code?

Q8 How would you fix the bug?

Broken List
Below is a program that attempts to insert twice into a thread-safe list.

1 typedef struct __node_t {
2 int key;
3 struct __node_t *next;
4 } node_t;
5
6 typedef struct {
7 mutex_t m;
8 node_t *head;
9 } list_t;

10
11 int list_prepend(list_t *list, int key) {
12 mutex_lock(&m);
13 node_t *n = malloc(sizeof(node_t));
14 if (n == NULL) { return -1; } // failed to insert
15 n->key = key;
16 n->next = list->head;
17 list->head = n; // insert at head
18 mutex_unlock(&m);
19 return 0; // success!
20 }
21
22 int main() {
23 list_t list;
24 list_prepend(&list, 1);
25 list_prepend(&list, 2);
26 }

Q9 Assuming malloc succeeds in both calls to list_prepend, what is the state of the list at the end
of the program?

 head → 1 → 2

 head → 2 → 1

 head → 1

 head → 2

 The program never terminates.

Q10 Assuming malloc succeeds the first call to list_prepend but fails in the second one, what is
the state of the list at the end of the program?

 head → 1 → 2

 head → 2 → 1

 head → 1

 head → 2

 The program never terminates.

Q11 Assuming malloc fails the first call to list_prepend and succeeds in the second call, what is
the state of the list at the end of the program?

 head → 1 → 2

 head → 2 → 1

 head → 1

 head → 2

 The program never terminates.

Part 3 Design Question

Q12 One common storage medium is called “flash” storage or solid-state storage. Solid state drives
(SSDs) are so-called because they have no mechanically moving parts (unlike the spinning magnetic
disks or seek arm of a hard disk). They have much faster access times than magnetic hard disks, with
three major downsides: 1) SSDs are much more expensive to manufacture and, thus, buy; 2) each
writeable unit (a page) must be erased first before it can be updated; 3) each writable unit can only
sustain a fairly small number of erases before it becomes unusable (this is called “wear”).

In practice, SSDs have fairly sophisticated computers on them that try to mask the page wear using
various “wear-leveling” algorithms—basically lying about which pages are actually being written to.
But, for the purpose of this question, we’ll assume they don’t—if the OS reads, erases or writes to
page 15, it’s always the same set of molecules.

Your job is to design a file system for SSDs that minimizes wear on pages. SSDs are typically
exposed to the file systems the same as hard disks—as a generic block device. Let’s assume, for
simplicity, that an SSD page is the same size as a block, so a block in your file system
implementation always maps to a page.

Your file system should have all the same characteristics as the file-systems discussed in class—files,
directories, inodes, etc, so you can elide design details that are common to other file systems.
Instead, decide what kind of file system implementation to use—a regular naive block file system, a
journaling file system—and how. How does your file system design affect wear on individual pages?
How does it perform?

	CS 417: Operating Systems
	Spring 2025: Practice Final Exam

	True/False
	Code Analysis
	Producer/Consumer
	Broken List

	Design Question

