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Wait, another synchroniziation primitive?
Yes, another one. Deal with it.

Book: “As we know now, one needs both locks and condition
variables to solve a broad range of relevant and interesting
concurrency problems.”

Well… no! We’ve seen: we can build CVs from mutexes, and mutexes
from atomic integer instructions.

But remember, we’re dealing with abstractions here…



Musing on Abstractions
An unnecessary abstractions is a terrible tragedy. Necessary if:

• Allows system to implement more efficiently than application
• Allows portability
• Help programmers reason about correctness more easily

– But this one can be done in a library!

Different synchronization abstractions serve all three.
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void sem_post(sem_t *s, unsigned int value);



Semaphore Interface
// Initialize a semaphore with initial value `value`
void sem_init(sem_t *s, unsigned int value);

// Decrement the semaphore's value, waiting first value is `0`.
void sem_wait(sem_t *s, unsigned int value);

// Increment the semaphore's value
void sem_post(sem_t *s, unsigned int value);

Invariants:
• Semaphore value is never negative
• # waits returned <= # posts returned + initial value



Example: A Resource Pool
Assume a spherical cow an atomic queue…

typdef struct {
  sem_t s; queue r;
} pool;

void release(pool *wp, void *w)
{
  atomic_enqueue(&wp->r, w);
  sem_post(&wp->s);
}

void init_pool(pool *wp) {
    sem_init(&wp->s, 0);
}

void *acquire(pool *wp) {
  sem_wait(&wp->s);
  return
    atomic_dequeue(&wp->r);
}
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Example: Resource Pool
Using a semaphore gave us:

• A simple implementation that’s easy to reason about
• Implementation works regardless of how system implements

semaphores

But, can we implement this as a library?

Can we implement this as a library without sacrificing portability?



Semaphore imlemented with a Mutex
typedef struct {
  mutex_t m;
  int v;
} mysem_t;

void mysem_post(mysem_t *s) {
  mutex_lock(&s->m);
  s->v++;
  mutex_unlock(&s->m);
}

• Almost Linux kernel impl.
– Using a spinlock for a mutex
– Plus some magic startdust

void mysem_wait(mysem_t *s) {
  while(1) {
    mutex_lock(&s->m);
    if (s->v <= 0) {
      mutex_unlock(&s->m);
      continue;
    } else {
      s->v--;
      mutex_unlock(&s->m);
      break;
    }
  }
}
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Semaphore imlemented with a Mutex
void mysem_post(mysem_t *s) {
  mutex_lock(&s->m);
  s->v++;
  mutex_unlock(&s->m);
}
void mysem_wait(mysem_t *s) {
  while(1) {
    sleep(1);
    mutex_lock(&s->m);
    if (s->v <= 0) {
      mutex_unlock(&s->m);
      continue;
    } else {
      s->v--;
      mutex_unlock(&s->m); break;
    }
  }
}

• Is this efficient?
• What about this?



Semaphore imlemented with a Mutex + CV
typedef struct {
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• Is this efficient?
•
•
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Semaphore imlemented with a Mutex + CV
typedef struct {
  mutex_t m;
  cond_t c;
  int v;
} mysem_t;

• Is this efficient?
• Is this fair?
• pthreads implementation

void mysem_post(mysem_t *s) {
  mutex_lock(&s->m);
  s->v++;
  cond_signal(&s->c);
  mutex_unlock(&s->m);
}

void mysem_wait(mysem_t *s) {
    mutex_lock(&s->m);
    while (s->v <= 0) {
      cond_wait(&s->c, &s->m);
    }
    s->v--;
    mutex_unlock(&s->m);
}
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Let’s implement a CV using a semaphore!
• Never do this at home
• We’ll probably get it wrong

Take 10 minutes to think about this.

What should our data structure look like?


	Semaphores
	COS 417: Operating Systems
	Spring 2025, Princeton University

	Wait, another synchroniziation primitive?
	Musing on Abstractions
	Semaphore Interface
	Invariants:

	Example: A Resource Pool
	Example: Resource Pool
	Semaphore imlemented with a Mutex
	Semaphore imlemented with a Mutex
	Semaphore imlemented with a Mutex
	Semaphore imlemented with a Mutex + CV
	Let's implement a CV using a semaphore!

