
Semaphores
COS 417: Operating Systems

Spring 2025, Princeton University

Wait, another synchroniziation primitive?

Wait, another synchroniziation primitive?
Yes, another one. Deal with it.

Wait, another synchroniziation primitive?
Yes, another one. Deal with it.

Book: “As we know now, one needs both locks and condition
variables to solve a broad range of relevant and interesting
concurrency problems.”

Wait, another synchroniziation primitive?
Yes, another one. Deal with it.

Book: “As we know now, one needs both locks and condition
variables to solve a broad range of relevant and interesting
concurrency problems.”

Well… no! We’ve seen: we can build CVs from mutexes, and mutexes
from atomic integer instructions.

Wait, another synchroniziation primitive?
Yes, another one. Deal with it.

Book: “As we know now, one needs both locks and condition
variables to solve a broad range of relevant and interesting
concurrency problems.”

Well… no! We’ve seen: we can build CVs from mutexes, and mutexes
from atomic integer instructions.

But remember, we’re dealing with abstractions here…

Musing on Abstractions
An unnecessary abstractions is a terrible tragedy. Necessary if:

• Allows system to implement more efficiently than application
• Allows portability
• Help programmers reason about correctness more easily

– But this one can be done in a library!

Different synchronization abstractions serve all three.

Semaphore Interface
// Initialize a semaphore with initial value `value`
void sem_init(sem_t *s, unsigned int value);

// Decrement the semaphore's value, waiting first value is `0`.
void sem_wait(sem_t *s, unsigned int value);

// Increment the semaphore's value
void sem_post(sem_t *s, unsigned int value);

Semaphore Interface
// Initialize a semaphore with initial value `value`
void sem_init(sem_t *s, unsigned int value);

// Decrement the semaphore's value, waiting first value is `0`.
void sem_wait(sem_t *s, unsigned int value);

// Increment the semaphore's value
void sem_post(sem_t *s, unsigned int value);

Invariants:
• Semaphore value is never negative
• # waits returned <= # posts returned + initial value

Example: A Resource Pool
Assume a spherical cow an atomic queue…

typdef struct {
 sem_t s; queue r;
} pool;

void release(pool *wp, void *w)
{
 atomic_enqueue(&wp->r, w);
 sem_post(&wp->s);
}

void init_pool(pool *wp) {
 sem_init(&wp->s, 0);
}

void *acquire(pool *wp) {
 sem_wait(&wp->s);
 return
 atomic_dequeue(&wp->r);
}

Example: Resource Pool
Using a semaphore gave us:

• A simple implementation that’s easy to reason about
• Implementation works regardless of how system implements

semaphores

Example: Resource Pool
Using a semaphore gave us:

• A simple implementation that’s easy to reason about
• Implementation works regardless of how system implements

semaphores

But, can we implement this as a library?

Example: Resource Pool
Using a semaphore gave us:

• A simple implementation that’s easy to reason about
• Implementation works regardless of how system implements

semaphores

But, can we implement this as a library?

Can we implement this as a library without sacrificing portability?

Semaphore imlemented with a Mutex
typedef struct {
 mutex_t m;
 int v;
} mysem_t;

void mysem_post(mysem_t *s) {
 mutex_lock(&s->m);
 s->v++;
 mutex_unlock(&s->m);
}

• Almost Linux kernel impl.
– Using a spinlock for a mutex
– Plus some magic startdust

void mysem_wait(mysem_t *s) {
 while(1) {
 mutex_lock(&s->m);
 if (s->v <= 0) {
 mutex_unlock(&s->m);
 continue;
 } else {
 s->v--;
 mutex_unlock(&s->m);
 break;
 }
 }
}

Semaphore imlemented with a Mutex
void mysem_post(mysem_t *s) {
 mutex_lock(&s->m);
 s->v++;
 mutex_unlock(&s->m);
}
void mysem_wait(mysem_t *s) {
 while(1) {
 mutex_lock(&s->m);
 if (s->v <= 0) {
 mutex_unlock(&s->m);
 continue;
 } else {
 s->v--;
 mutex_unlock(&s->m); break;
 }
 }
}

• Is this efficient?

Semaphore imlemented with a Mutex
void mysem_post(mysem_t *s) {
 mutex_lock(&s->m);
 s->v++;
 mutex_unlock(&s->m);
}
void mysem_wait(mysem_t *s) {
 while(1) {
 sleep(1);
 mutex_lock(&s->m);
 if (s->v <= 0) {
 mutex_unlock(&s->m);
 continue;
 } else {
 s->v--;
 mutex_unlock(&s->m); break;
 }
 }
}

• Is this efficient?
• What about this?

Semaphore imlemented with a Mutex + CV
typedef struct {
 mutex_t m;
 cond_t c;
 int v;
} mysem_t;

• Is this efficient?
•
•

void mysem_post(mysem_t *s) {
 mutex_lock(&s->m);
 s->v++;
 cond_signal(&s->c);
 mutex_unlock(&s->m);
}

void mysem_wait(mysem_t *s) {
 mutex_lock(&s->m);
 while (s->v <= 0) {
 cond_wait(&s->c, &s->m);
 }
 s->v--;
 mutex_unlock(&s->m);
}

Semaphore imlemented with a Mutex + CV
typedef struct {
 mutex_t m;
 cond_t c;
 int v;
} mysem_t;

• Is this efficient?
• Is this fair?
•

void mysem_post(mysem_t *s) {
 mutex_lock(&s->m);
 s->v++;
 cond_signal(&s->c);
 mutex_unlock(&s->m);
}

void mysem_wait(mysem_t *s) {
 mutex_lock(&s->m);
 while (s->v <= 0) {
 cond_wait(&s->c, &s->m);
 }
 s->v--;
 mutex_unlock(&s->m);
}

Semaphore imlemented with a Mutex + CV
typedef struct {
 mutex_t m;
 cond_t c;
 int v;
} mysem_t;

• Is this efficient?
• Is this fair?
• pthreads implementation

void mysem_post(mysem_t *s) {
 mutex_lock(&s->m);
 s->v++;
 cond_signal(&s->c);
 mutex_unlock(&s->m);
}

void mysem_wait(mysem_t *s) {
 mutex_lock(&s->m);
 while (s->v <= 0) {
 cond_wait(&s->c, &s->m);
 }
 s->v--;
 mutex_unlock(&s->m);
}

Let’s implement a CV using a semaphore!
• Never do this at home
• We’ll probably get it wrong

Let’s implement a CV using a semaphore!
• Never do this at home
• We’ll probably get it wrong

Take 10 minutes to think about this.

What should our data structure look like?

	Semaphores
	COS 417: Operating Systems
	Spring 2025, Princeton University

	Wait, another synchroniziation primitive?
	Musing on Abstractions
	Semaphore Interface
	Invariants:

	Example: A Resource Pool
	Example: Resource Pool
	Semaphore imlemented with a Mutex
	Semaphore imlemented with a Mutex
	Semaphore imlemented with a Mutex
	Semaphore imlemented with a Mutex + CV
	Let's implement a CV using a semaphore!

