
Security Issues in Web
Programming (Part 4)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Data comm attacks
– Third-party authentication (briefly):

• CAS
• Google authentication

2

Agenda

• Data comm attacks
• Third-party authentication (briefly)

– CAS
– Google authentication

3

Data Comm Attacks

• Problem:
– Attacker may access data during comm

between PennyAdmin app and browser
• Solution:

– Hypertext Transfer Protocol Secure
(HTTPS)

4

Data Comm Attacks

• Technical advantages of using HTTPS
– Confidentiality

• Prohibits message eavesdropping attacks
– Integrity

• Prohibits message tampering attacks
– Authentication

• Prohibits message forgery attacks

5

Data Comm Attacks

• Business advantages of using HTTPS
– Increases user confidence/trust in website
– Increases Google search rank of website

6

• How HTTPS works:

Data Comm Attacks

Secure Sockets Layer (SSL)

Transport Layer Security (TLS)

Hypertext Transfer Protocol Secure (HTTPS)

7

Data Comm Attacks

• How to use HTTPS:
– Configure server & app to use (& require use

of) HTTPS
– Command browser to send request

specifying HTTPS as protocol
• https://…

8

Data Comm Attacks

• How to configure server & app to use (&
require use of) HTTPS:
– Depends upon server…

9

Data Comm Attacks

• Render server
– Already configured to use (& require use of)

HTTPS
• When server receives http://something

request, it sends redirect for
https://something request

– So:
• Server: Do nothing!
• App: Do nothing!

10

Data Comm Attacks

• Heroku server
– Already configured to use (but not require

use of) HTTPS
• When server receives https://something

request, it uses HTTPS
• When server receives http://something

request, it uses HTTP
– So

• Server: (Regrettably) Do nothing!
• App: Small change…

11

Data Comm Attacks

• Solution 1:
– App explicitly performs redirects

12

Data Comm Attacks

• See PennyAdmin13Https app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– header.html, footer.html
– index.html, show.html,
– add.html, delete.html, reportresults.html
– login.html, signup.html, loggedout.html
– top.py, penny.py, auth.py

13

Data Comm Attacks

• Solution 2:
– flask_talisman module

14

Data Comm Attacks

• See PennyAdmin14Https app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– header.html, footer.html
– index.html, show.html,
– add.html, delete.html, reportresults.html
– login.html, signup.html, loggedout.html
– top.py, penny.py, auth.py

15

Data Comm Attacks

• Notes:
– Good to design your app to require use of

HTTPS even when the app server already
forces use of HTTPS

– flask_talisman implements some additional
security measures

– Need not configure Flask test server to use
(or require use of) HTTPS

• But if you want to…
• Or if you’re using Google authentication…

16

Data Comm Attacks

• How to configure Flask test server & app
to use (& require use of) HTTPS:

17

Data Comm Attacks

• Preliminary step: Get a certificate for
your app

• Option 1: Get a certificate that is signed
by a certificate authority

18

Data Comm Attacks
Certificate authorities:

Rank Authority Market Share

1 IdenTrust 49%

2 DigiCert 19%

3 Sectigo 16%

4 Let’s Encrypt 8%

5 GoDaddy 6%

6 GlobalSign 3%

https://en.wikipedia.org/wiki/Certificate_authority#Providers
(as of Aug 2022)

19

https://en.wikipedia.org/wiki/Certificate_authority#Providers

Data Comm Attacks

• Preliminary step: Get a certificate for
your app

• Option 1: Buy a certificate that is signed
by a certificate authority

• Option 2: Create a self-signed
certificate

20

Data Comm Attacks

$ openssl req -x509 -newkey rsa:4096 -nodes -out cert.pem -keyout key.pem -days 365
Generating a RSA private key
..++++
.......++++
writing new private key to 'key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: US
State or Province Name (full name) [Some-State]: NJ
Locality Name (eg, city) []: Princeton
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Princeton University
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []: localhost
Email Address []:
$

Output: cert.pem, key.pem 21

Linux, Mac, MS Windows Git Bash:

Data Comm Attacks

• Self-signed certificate
– Confidentiality: yes
– Integrity: yes
– Authentication: no

22

Data Comm Attacks

• See PennyAdmin15HttpsLocal app
– runserver.py
– penny.sql, penny.sqlite
– database.py
– header.html, footer.html
– index.html, show.html,
– add.html, delete.html, reportresults.html
– login.html, signup.html, loggedout.html
– top.py, penny.py, auth.py

23

Data Comm Attacks

• See PennyAdmin15HttpsLocal app
– On local computer with Flask test server

(using self-signed certif)

24

Data Comm Attacks

• See PennyAdmin15HttpsLocal app
– On local computer with Flask test server

(using self-signed certif)

25

Data Comm Attacks

• See PennyAdmin15HttpsLocal app
– On local computer with Flask test server

(using self-signed certif)

26

Data Comm Attacks

• Q: Project concern?

• A: Yes

27

Agenda

• Data comm attacks
• Third-party authentication (briefly)

– CAS
– Google authentication

28

Agenda

• Data comm attacks
• Third-party authentication (briefly)

– CAS
– Google authentication

29

CAS

• Central Authentication Service (CAS)

30

“The Central Authentication Service (CAS) is a single
sign-on protocol for the web. Its purpose is to permit a user
to access multiple applications while providing their
credentials (such as userid and password) only once. It
also allows web applications to authenticate users
without gaining access to a user’s security credentials,
such as a password.”

– https://en.wikipedia.org/wiki/Central_Authentication_Service

CAS

• See PennyAdmin16Cas app (cont.)
– Part 1: User logs into CAS server

• Unnecessary if user is already logged into CAS
server

• User must provide credentials
– Part 2: User logs into PennyAdmin

• User need not provide credentials

31

CAS

• See PennyAdmin16Cas app (cont.)

– How to run it on your local computer…

32

CAS

• See PennyAdmin16Cas app (cont.)
– In terminal, enter this command:

– In browser, enter URL:
• http://localhost:55555

– Must use localhost (and not 127.0.0.1, and not the
real IP address of your computer)

33

$ python runserver.py 55555

http://localhost:55555

• See PennyAdmin16Cas app (cont.)

CAS

34

CAS

• See PennyAdmin16Cas app (cont.)

35

CAS

• See PennyAdmin16Cas app (cont.)

36

CAS

• See PennyAdmin16Cas app (cont.)

37

CAS

• See PennyAdmin16Cas app (cont.)

38

CAS

• See PennyAdmin16Cas app (cont.)

39

CAS

• See PennyAdmin16Cas app (cont.)

– How to run it on Render (or Heroku, or any
cloud service) …

40

CAS
• See PennyAdmin16Cas app (cont.)

– Ask OIT to place the URL of the app on the
Princeton CAS white list

• Instructions are provided in the COS 333 Princeton
Data Sources web page

– In browser, enter URL:
• https://ipaddress

41

CAS

• See PennyAdmin16Cas app (cont.)
– runserver.py
– penny.sql, penny.sqlite
– database.py
– header.html, footer.html
– index.html, show.html,
– add.html, delete.html, reportresults.html
– loggedout.html
– top.py, penny.py, auth.py

42

CAS

• See PennyAdmin16Cas app (cont.)

– How it works…
– See Appendix 1

43

CAS

• Pros
– Application need not manage usernames or

passwords
– Application cannot access passwords!
– Application is constrained to one user

community

44

CAS

• Cons
– Complex
– Adds overhead, but only during user’s first

visit to the app per browser session
– Application is constrained to one user

community!

45

Agenda

• Data comm attacks
• Third-party authentication (briefly)

– CAS
– Google authentication

46

Google Authentication

• See PennyAdmin17Google app
– Part 1: User logs into Google server

• Unnecessary if user is already logged into Google
server

• User must provide credentials
– Part 2: User logs into PennyAdmin

• User need not provide credentials

47

Google Authentication

• See PennyAdmin17Google app (cont.)

– How to run it on your local computer…

48

Google Authentication

• Preliminary
– Make sure these packages are installed (via
pip) in your Python virtual environment

49

Flask
python-dotenv
oauthlib
requests

Google Authentication

• Preliminary
– Create a self-signed certificate (as described

previously in this lecture)

50

$ openssl req -x509 -newkey rsa:4096 -nodes -out cert.pem -keyout key.pem -days 365
…
Country Name (2 letter code) [AU]: US
State or Province Name (full name) [Some-State]: NJ
Locality Name (eg, city) []: Princeton
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Princeton University
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []: localhost
Email Address []:
$

Google Authentication

• Preliminary
– Strongly suggested…
– Create a project Google account (i.e., a

gmail address) for your project team
• Use your project Google account exclusively for

Google authentication setup and subsequent app
testing

51

Google Authentication

• Preliminary
– Register app (https://localhost:5000) as a client

of Google
• Log into Google using your project Google account
• Browse to

https://console.developers.google.com/apis/creden
tials

• Click CREATE PROJECT
• For Project name enter Penny
• Click CREATE

52

https://console.developers.google.com/apis/credentials
https://console.developers.google.com/apis/credentials
https://console.developers.google.com/apis/credentials

Google Authentication
• Preliminary

– Register app (https://localhost:5000) as a client
of Google (cont.)

• Click CONFIGURE CONSENT SCREEN
• For User Type choose External
• Click CREATE
• For App name enter Penny
• For User support email enter your your project

gmail address
• For Developer contact information enter your

project gmail address
• Click SAVE AND CONTINUE a few times to finish

the consent

53

Google Authentication
• Preliminary

– Register app (https://localhost:5000) as a client
of Google (cont.)

• Click Credentials
• Click Create Credentials, OAuth client ID, Web

Application
• In Authorized JavaScript origins:

– Click ADD URI
– Enter https://localhost:5000

• In Authorized redirect URIs:
– Click ADD URI
– Add Authorized Redirect URI:

https://localhost:5000/login/callback

54

https://localhost:5000
https://localhost:5000/login/callback

Google Authentication

• Preliminary
– Register app (https://localhost:5000) as a client

of Google (cont.)
• Google provides GOOGLE_CLIENT_ID and
GOOGLE_CLIENT_SECRET
– Take note of them!

55

Google Authentication

APP_SECRET_KEY=yourappsecretkey
GOOGLE_CLIENT_ID=yourgoogleclientid
GOOGLE_CLIENT_SECRET=yourgoogleclientsecret

Create environment variables:

56

Google Authentication

• See PennyAdmin17Google app (cont.)
– In terminal, enter this command:

• Runs Flask test server on port 5000
• Runs Flask test server using HTTPS

– In browser, enter URL:
• https://localhost:5000

57

$ python runserver.py

https://localhost:5000

Google Authentication

• See PennyAdmin17Google app (cont.)

58

Google Authentication

• See PennyAdmin17Google app (cont.)

59

Google Authentication

• See PennyAdmin17Google app (cont.)

60

Google Authentication

• See PennyAdmin17Google app (cont.)

61

Google Authentication

• See PennyAdmin17Google app (cont.)

62

Google Authentication

• See PennyAdmin17Google app (cont.)

63

How to
show
loggedout
page?

Google Authentication

• See PennyAdmin17Google (cont.)

– How to run it on Render (or Heroku, or any
cloud service)…

64

Google Authentication

• Preliminary
– Deploy the app to Render

• Push the app to a GitHub repo
• Create a new Render app linked to the GitHub

repo
• Deploy the application from GitHub to Render

– Configure the Render app
• Create env vars APP_SECRET_KEY,

GOOGLE_CLIENT_ID,
GOOGLE_CLIENT_SECRET

65

Google Authentication

• Preliminary (cont.)
– All preliminaries are the same, except:

• For Authorized JavaScript origins enter the URL of
your deployed application

• For Authorized redirect URIs enter the callback
URL of your deployed application

• In browser, enter URL:
• https://ipaddressofrenderapp

66

Google Authentication

• See PennyAdmin17Google app (cont.)

– How it works…
– See Appendix 2

67

Google Authentication

• See PennyAdmin17Google app (cont.)
– runserver.py
– penny.sql, penny.sqlite
– database.py
– header.html, footer.html
– index.html, show.html,
– add.html, delete.html, reportresults.html
– top.py, penny.py, auth.py

68

Google Authentication

• Pros
– Users need not remember (yet another)

password
– Application need not manage usernames or

passwords
– Application cannot access passwords
– Application can access profile info that user

provided to Google
• Given name, family name, picture, …

69

Google Authentication

• Cons
– Complex
– Adds overhead, but mostly only during first

user visit per browser session
– Application is constrained to users who have

Google accounts
– If attacker learns user’s password for

Google, then attacker learns user’s
password for your app

70

Google Authentication

• For more information...

• https://realpython.com/flask-google-login/

71

https://realpython.com/flask-google-login/

Summary

• We have covered:
– Data comm attacks
– Third-party authentication (briefly)

• CAS
• Google authentication

72

Summary

• We have covered:
– SQL injection attacks
– Cross-site scripting (XSS) attacks
– Authentication & authorization
– Cookie forgery attacks
– Cross-site request forgery (CSRF) attacks
– Data storage attacks
– Data comm attacks
– Third-party authentication (briefly)

73

Appendix 1:
How CAS Works

How CAS Works

• Procedure

– Part 1: User logs into CAS server
• User must provide credentials

– Part 2: User logs into PennyAdmin
• User need not provide credentials

75

How CAS Works

• See PennyAdmin16Cas app (cont.)
– The flow…

76

Abbreviations:
 FED = https://fed.princeton.edu/cas
 PEN = https://localhost:55555

How CAS Works

First use of PennyAdmin in browser session,
browser session not CAS authenticated…

77

How CAS Works
User Browser PennyAdmin

(1) Request
PEN/XXX

(2) GET request for
PEN/XXX

username in
session? no
Ticket arg in
request? no

(3) Redirect to
FED/login?service=PEN
/XXX

(4) GET request for
FED/login?
service=PEN/XXX

(6) login page
containing form

(7) username
& password

78

Fed

(5) login page
containing form

How CAS Works
User Browser PennyAdmin

(8) POST request for
FED/login?service=PEN
/XXX
with username & password in
body

Username in
session? no
Ticket arg in
request? yes

(9) set cookie CASTGC=AAA
Redirect to
PEN/XXX&ticket=BBB

(10) GET request for
PEN/XXX&ticket=BBB

79

Fed

(11) GET request for
FED/validate?
service=PEN/XXX
&ticket=BBB

Username
and password
valid? yes

End of part1

Start of part 2

How CAS Works
User Browser PennyAdmin

(12) “yes” and username

(13) PEN/XXX

80

Fed

(14) PEN/XXX

response =
“yes”? yes
Save
username in
session

Ticket valid?
yes

How CAS Works

Second use of PennyAdmin in same browser
session…

81

How CAS Works
User Browser PennyAdmin

(15) Request
PEN/YYY

(16) GET request for
PEN/YYY

username in
session? yes

(17) PEN/YYY

(18) PEN/YYY

82

Fed

How CAS Works

First use of PennyAdmin in browser session,
browser session already CAS authenticated…

83

How CAS Works
User Browser PennyAdmin

(19) Request
PEN/XXX

(20) GET request for
PEN/XXX

username in
session? no
ticket arg in
request? no

(21) Redirect to
FED/login?service=PEN
/XXX

(22) GET request for
FED/login?
service=PEN/XXX
with CASTGC=AAA as cookie

84

Fed

(23) Redirect to
PEN/XXX?ticket=CCC

CASTGC=AAA
valid? yes

CONTINUE AT STEP 10

How CAS Works

• For more information…

• https://apereo.github.io/cas/6.5.x/protocol/
CAS-Protocol.html

85

https://apereo.github.io/cas/6.5.x/protocol/CAS-Protocol.html
https://apereo.github.io/cas/6.5.x/protocol/CAS-Protocol.html

Appendix 2:
How Google

Authentication Works

How Google Auth Works

• Procedure

– Part 1: User logs into Google
• User must provide credentials

– Part 2: User logs into PennyAdmin
• User need not provide credentials

87

How Google Auth Works

• OAuth2

88

OAuth ("Open Authorization") is an open standard for
access delegation, commonly used as a way for internet
users to grant websites or applications access to their
information on other websites but without giving them the
passwords. This mechanism is used by companies such as
Amazon, Google, Facebook, Microsoft, and Twitter to
permit the users to share information about their accounts
with third-party applications or websites.

– https://en.wikipedia.org/wiki/OAuth

How Google Auth Works

PennyAdmin Google

(1) authorize(credentials)

(2) authorizationCode

(3) fetchToken(credentials, authorizationCode)

(4) accessToken

(6) userProfile

89

(5) getUserProfile(accessToken)

Ahead of time: register PennyAdmin with Google; get credentials

OAuth2 Flow Overview:

Google
authenticates
user

How Google Auth Works

• See PennyAdmin17Google app (cont.)
– The flow:

90

How Google Auth Works

First use of PennyAdmin in browser session,
browser session not Google authenticated…

91

How Google Auth Works
(1) User
 Type: https://localhost:5000/index

(2) Browser
 Send GET request: https://localhost:5000/index

(3) PennyAdmin (in /index endpoint)
 Email in session? No
 Return redirect: https://localhost:5000/login

(4) Browser
 Send GET request: https://localhost:5000/login

(5) PennyAdmin (in /login endpoint)
 Return redirect to the Google authorization endpoint, passing
 GOOGLE_CLIENT_ID and https://localhost:5000/login/callback
 as parameters

(6) Browser
 Send request to the Google authorization endpoint, passing GOOGLE_CLIENT_ID
 and https://localhost:5000/login/callback as parameters

92

How Google Auth Works
(7) Google
 Are the application (identified by GOOGLE_CLIENT_ID) and the given callback
 (https://localhost:5000/login/callback) registered? Yes.
 Do cookies indicate that the browser session is already Google authenticated?
 No.
 Return Google login page to browser

(8) Browser
 Render Google login page

(9) User
 Enter Google email and password and submit form

(10) Browser
 Send POST request to Google, with email and password in body

(11) Google
 Does the user authenticate? Yes.
 Return redirect:
 https://localhost:5000/login/callback?code=authorizationcode

END OF PART 1; BEGINNING OF PART 2 93

How Google Auth Works
(12) Browser
 Send GET request:
 https://localhost:5000/login/callback?code=authorizationcode

(13) PennyAdmin (in login/callback endpoint)
 Send POST request to Google with the authorizationcode, GOOGLE_CLIENT_ID, and
 GOOGLE_CLIENT_SECRET in the body

(14) Google
 Return access token

(15) PennyAdmin (in login/callback endpoint)
 Send GET request to Google with the access token as a header

(16) Google
 Return user’s profile data

(17) PennyAdmin (in login/callback endpoint)
 Add user’s profile data (notably email) to the session
 Return redirect: https://localhost:5000/index

94

How Google Auth Works
(18) Browser
 Send GET request: https://localhost:5000/index

(19) PennyAdmin
 Email in session? Yes
 Return index page

(20) Browser
 Render index page

95

How Google Auth Works

Second use of PennyAdmin in browser session…

96

How Google Auth Works
(21) User
 In index page, click on https://localhost:5000/show link

(22) Browser
 Send GET request: https://localhost:5000/show

(23) PennyAdmin
 Email in session? Yes
 Return show page

(24) Browser
 Render show page

97

How Google Auth Works

First use of PennyAdmin in browser session,
browser session already Google authenticated…

98

How Google Auth Works
(25) User
 Type: https://localhost:5000/index

(26) Browser
 Send GET request: https://localhost:5000/index

(27) PennyAdmin (in /index endpoint)
 Email in session? No
 Return redirect: https://localhost:5000/login

(28) Browser
 Send GET request: https://localhost:5000/login

(29) PennyAdmin (in /login endpoint)
 Return redirect to the Google authorization endpoint, passing
 GOOGLE_CLIENT_ID and https://localhost:5000/login/callback as
 parameters

99

How Google Auth Works
(30) Browser
 Send request to the Google authorization endpoint, passing GOOGLE_CLIENT_ID
 and https://localhost:5000/login/callback as parameters

(32) Google
 Are the application (identified by GOOGLE_CLIENT_ID) and the given callback
 (https://localhost:5000/login/callback) registered? Yes
 Do cookies indicate that the browser session is already Google authenticated?
 Yes
 Return redirect:
 https://localhost:5000/login/callback?code=authorizationcode

CONTINUE AT STEP 12

100

