
COS226 Precept 5 Spring ’25
Precept Outline• Review of Lectures 9 and 10:
– Binary Search Trees
– Balanced Binary Search Trees

• Midterm Review

Relevant Book Sections• Book chapters: 3.1, 3.2 and 3.3

A. Review: Binary Search Trees and Red-Black Trees

Your preceptor will briefly review key points of this week’s lectures. Here are some images remindingyou of some of the key definitions from lecture.

B. Red-Black Trees (Spring’23 Midterm)

The following binary search tree satisfies perfect black balance, but violates color invariants:

Give a sequence of 4 elementary operations (color flip, rotate left or rotate right) that restore the colorinvariants.
1



Consider the following left-leaning red-black BST with some of the edge colors suppressed:

Which keys in the above tree are red? (Recall that a key is red if the link to its parent is red.)

C. Data Structure Design - Midterm Review

Suppose that there are two teams of players that can play each other in head-to-head matches. Eachplayer has a certain rating, which is an integer value, and two players can play each other if they have thesame rating (otherwise it isn’t a balanced match). Design a data structure that computes the maximumnumber of distinct matches that the two teams can play at any point. The data structure should support2 operations. The first, addPlayer(rating, team) adds a new player of rating equal to rating and adds
it to team team, which can be 1 or 2. The second operation, numberOfMatches(), returns the maximumnumber of distinct matches that can be played by elements of team 1 versus elements of team 2 (see theexample below for more information).
public class MatchMaker

MatchMaker() creates two empty teams

void addPlayer(int rating, int team) adds player of rating to team

int numberOfMatches() returns the maximum number of matches that can be played

2



Full credit: The addPlayer() method should run in O(log n) time in the worst case and the numberOf

Matches()method should run in Θ(1) time.
Partial credit: The addPlayer() method should run in O(n) time in the worst case and the numberOf

Matches()method should run in Θ(1) time.
Example

MatchMaker mm = new MatchMaker();
mm.addPlayer(100, 1); // Team 1: {100: 1}
mm.addPlayer(200, 1); // Team 1: {100: 1, 200: 1}
mm.addPlayer(100, 2); // Team 2: {100: 1}, Matches = 1
mm.addPlayer(200, 2); // Team 2: {100: 1, 200: 1}, Matches = 2
mm.addPlayer(100, 1); // Team 1: {100: 2, 200: 1}, Matches = 2
StdOut.println(mm.numberOfMatches()); // Output: 2
mm.addPlayer(100, 2); // Team 2: {100: 2, 200: 1}, Matches = 3
StdOut.println(mm.numberOfMatches()); // Output: 3

The first call of numberOfMatches() outputs 2 since we can match the two 200 rating players together aswell as the one 100 rating player from team 2 with one of the 100 rating players from team 1. The secondcall can match each player to a different player, resulting in 3 total matches.
In the space provided, give a concise English description of your solution to the constructor, the addPlayer()
and the numberOfMatches() methods. You may use any of the algorithms and data structures that we have
considered in this course (e.g., lectures, precepts, textbook, assignments) as subroutines. If you modify any of
them, be sure to describe the modification. Feel free to use code or pseudocode to improve clarity.

3



D. Algorithm Design - Midterm Review

A length-n integer array a[] is single-peaked if there exists 0 ≤ k ≤ n−1 such that the subarray from indexup to (and including) k is strictly increasing, and the subarray from index k until n−1 is strictly decreasing.The entry a[k] is called the peak. For example, the array a[] = {3, 6, 7, 10, 4, 1} is a single-peaked with
peak 10, but the array a[] = {3, 6, 7, 10, 4, 5} is not.
Design an algorithm that receives as input a single-peaked array with n distinct elements, and outputs thepeak of the array. Specify the running time of your solution.
Full credit: The running time of the algorithm must be O(log n).
Partial credit: The running time of the algorithm must be O(n).
In the space provided, give a concise English description of your algorithm for solving the problem. You may
use any of the algorithms that we have considered in this course (e.g., lectures, precepts, textbook, assignments)
as subroutines. If you modify such an algorithm, be sure to describe the modification. Feel free to use code or
pseudocode to improve clarity.

4


	Review: Binary Search Trees and Red-Black Trees
	Red-Black Trees (Spring'23 Midterm)
	Data Structure Design - Midterm Review
	Algorithm Design - Midterm Review

