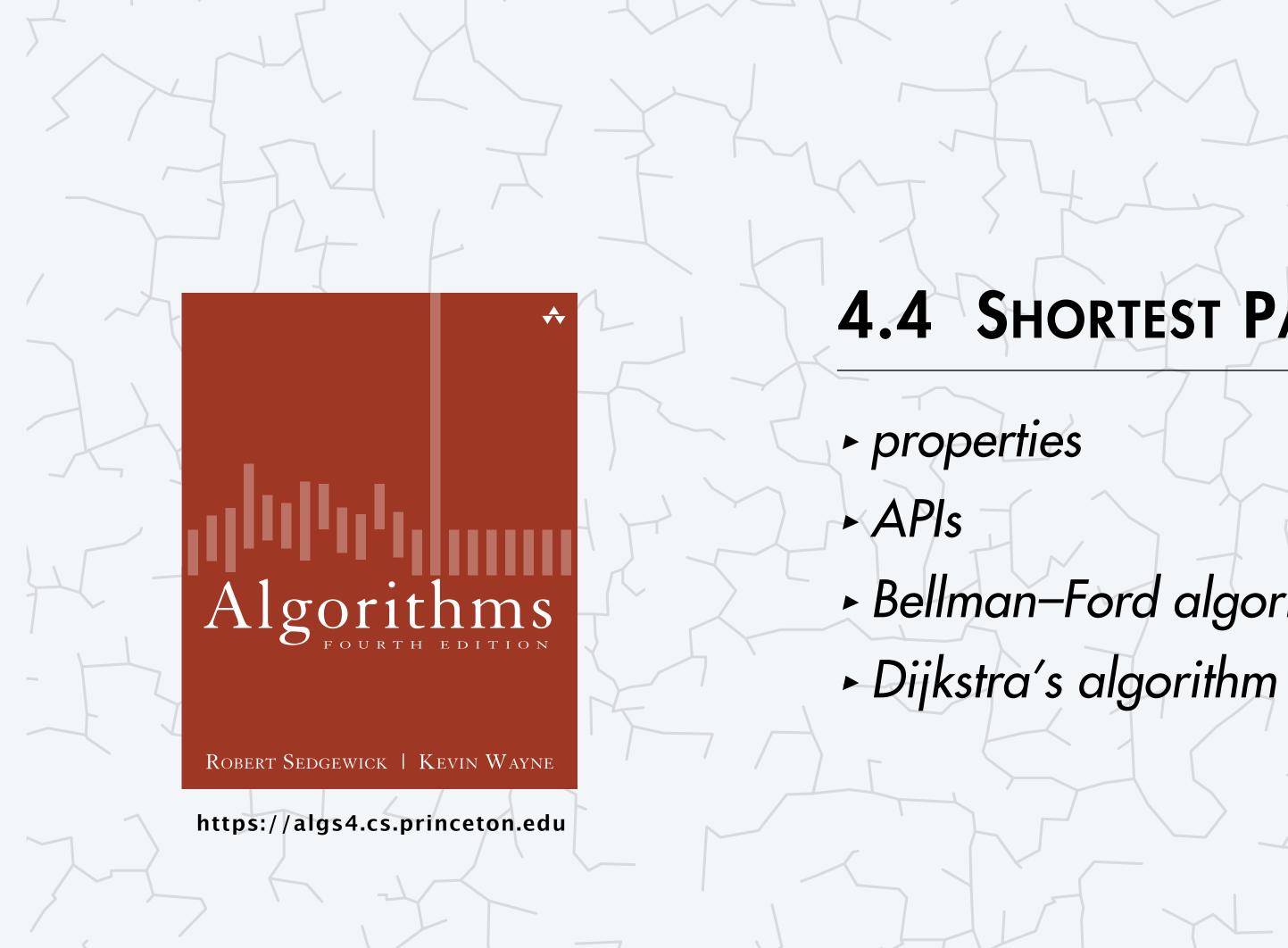
Algorithms



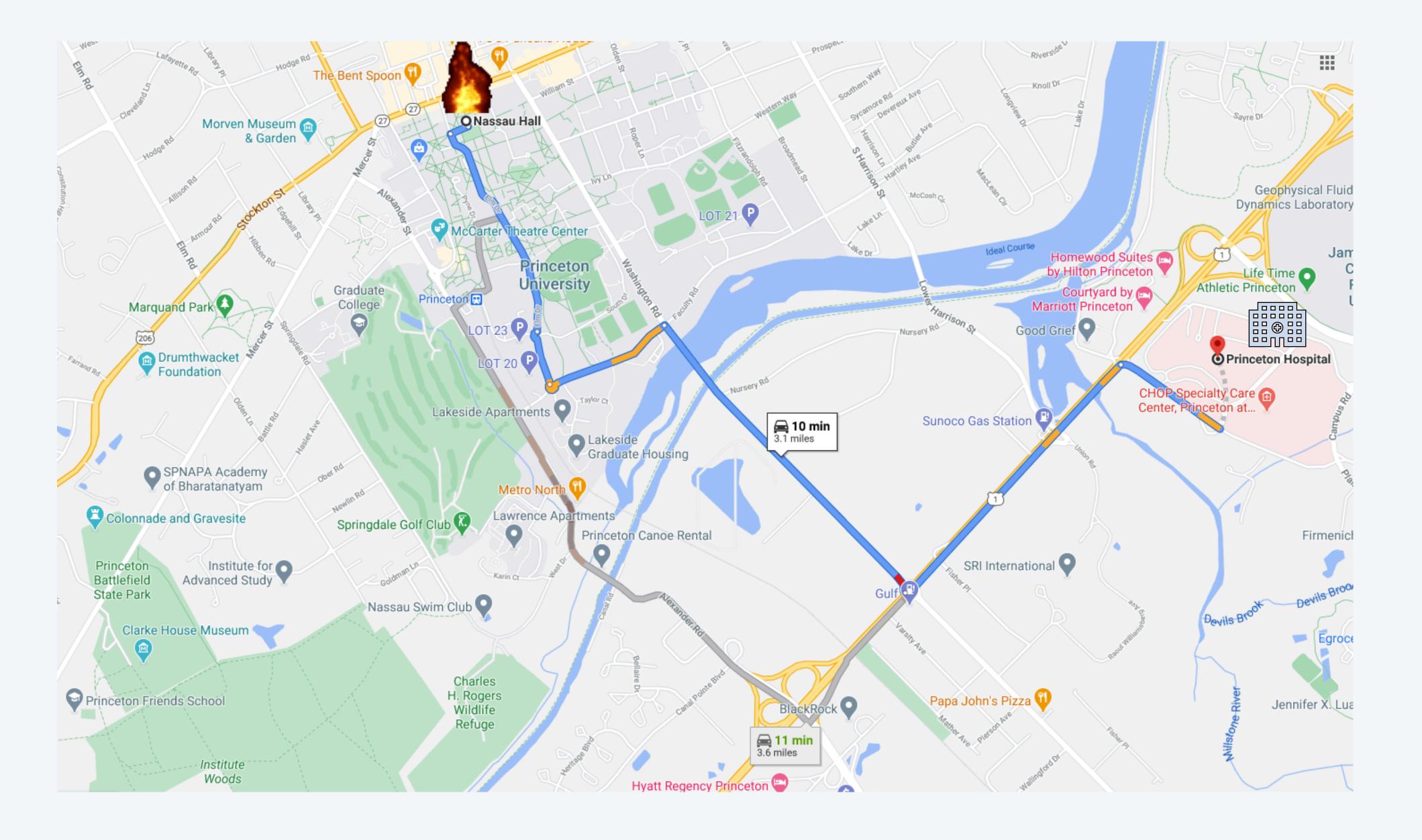
ROBERT SEDGEWICK | KEVIN WAYNE

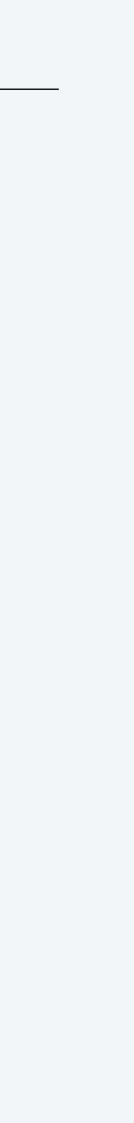
4.4 SHORTEST PATHS

Bellman–Ford algorithm

Last updated on 4/3/25 9:22AM

Google maps



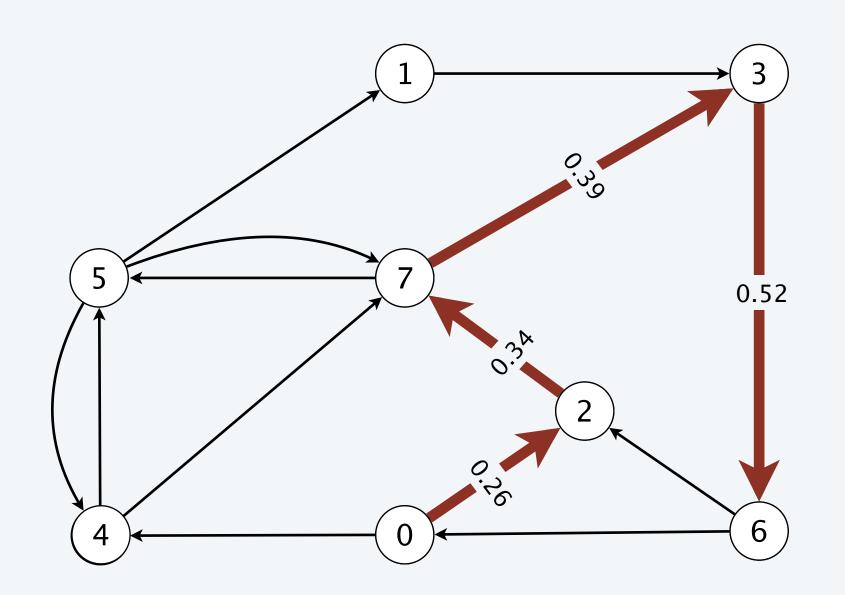


Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex.

edge-weighted digraph

4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58
6->4	0.93



shortest path from 0 to 6 $0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$

length of path = 1.51 (0.26 + 0.34 + 0.39 + 0.52)



Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving. see Assignment 6
- Texture mapping.
- Robot navigation.
- Typesetting $in T_F X$.
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Which vertices?

- Source-destination: from one vertex to another vertex.
- Single source: from one vertex to every vertex.
- Single destination: from every vertex to one vertex.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights. we assume this in today's lecture
- Euclidean weights.
- Arbitrary weights.

Directed cycles?

- (see next lecture)
- Allow.

Simplifying assumption. Each vertex is reachable from s.

(except as noted)

implies that shortest path from s to v exists (and that $E \ge V - 1$)

Which shortest path variant for car GPS? Hint: drivers make wrong turns occasionally.

- Source-destination: from one vertex to another vertex. Α.
- Single source: Β.
- С.
- **D.** All pairs:

- from one vertex to every vertex.
- Single destination: from every vertex to one vertex.
 - between all pairs of vertices.

4.4 SHORTEST PATHS

properties

APIs

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Bellman–Ford algorithm
 Dijkstra's algorithm

Data structures for single-source shortest paths

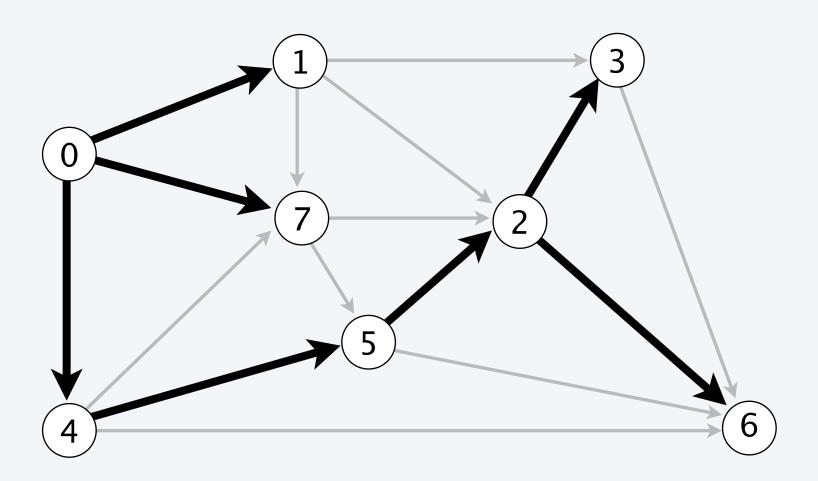
Goal. Find a shortest path from *s* to every vertex.

Observation 1. There exists a shortest path from s to v that is simple.

Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent shortest paths with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v. •



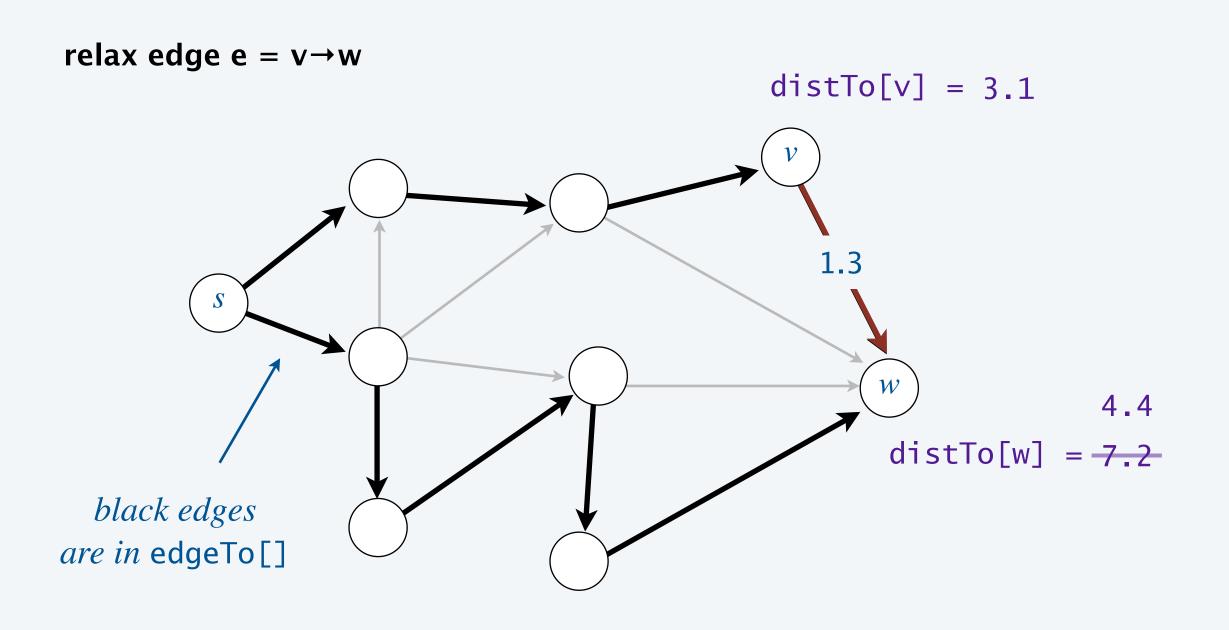
shortest-paths tree from 0

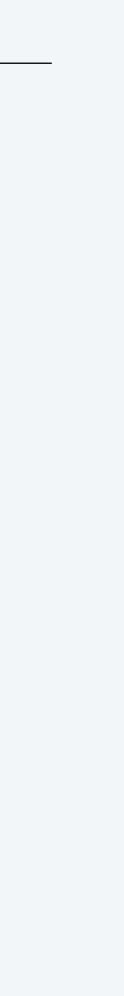
no repeated vertices $\implies \leq V - 1 \ edges$

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

Relax edge $e = v \rightarrow w$.

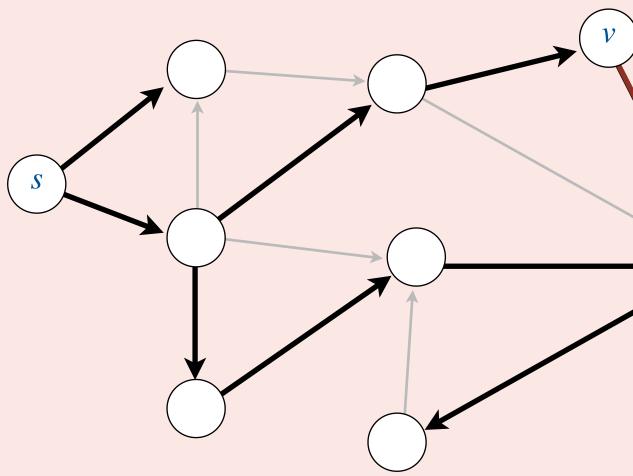
- distTo[v] is length of shortest known path from s to v. •
- distTo[w] is length of shortest known path from s to w. •
- edgeTo[w] is last edge on shortest known path from s to w. •
- If $e = v \rightarrow w$ yields shorter path from s to w, via v, update distTo[w] and edgeTo[w].





What are the values of distTo[v] and distTo[w] after relaxing edge $e = v \rightarrow w$?

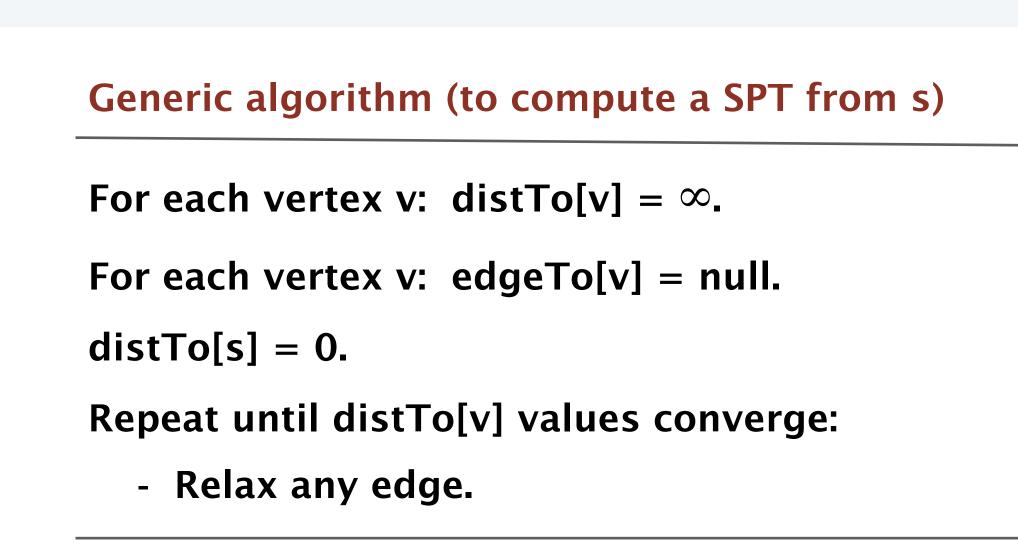
- 10.0 and 15.0 Α.
- B. 10.0 and 17.0
- 12.0 and 15.0 С.
- 12.0 and 17.0 D.



distTo[v] = 10.0

5.0 \mathcal{W}

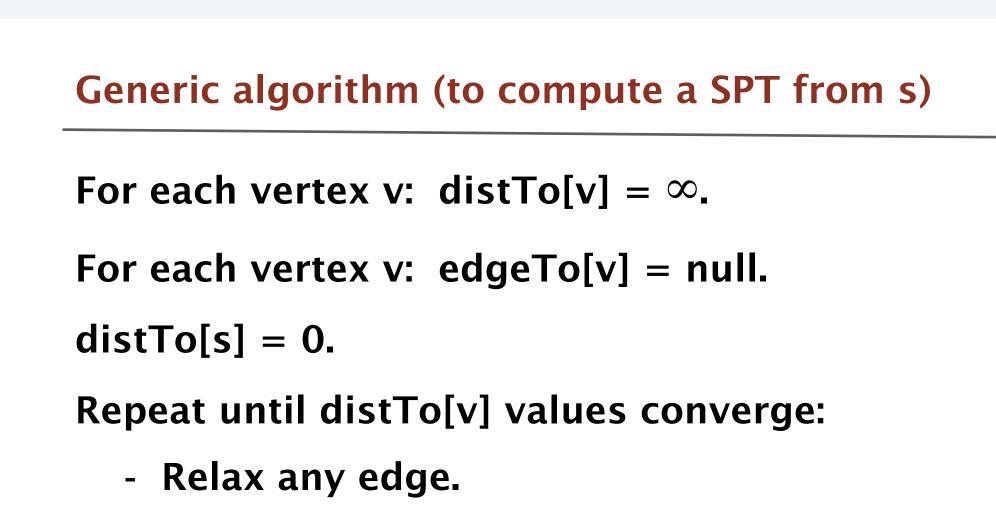
distTo[w] = 17.0



Key properties. Throughout the generic algorithm,

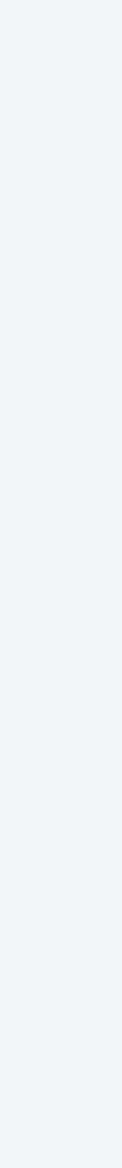
- distTo[v] is either infinity or the length of a (simple) path from s to v. •
- distTo[v] does not increase.

Framework for shortest-paths algorithm



Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?
- **Ex 1.** Bellman–Ford algorithm.
- Ex 2. Dijkstra's algorithm.
- Ex 3. Topological sort algorithm. *next lecture*



Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

properties

► APIs

Weighted directed edge API

API.

public	class DirectedEdge
	DirectedEdge(int v, int w, double weight)
int	from()
int	to()
double	weight()

Ex. Relax edge $e = v \rightarrow w$.

```
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

create weighted edge $v \rightarrow w$

vertex v

vertex w

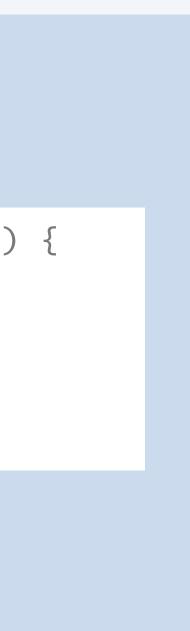
weight of this edge

•
•
•

4.4 distTo[v] = 3.1 distTo[w] = 7.2v - 1.3 - w

Weighted directed edge: implementation in Java

```
public class DirectedEdge {
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight) {
     this.v = v;
     this.w = w;
     this.weight = weight;
   public int from() {
      return v;
   }
                                       from() and to() replace
                                       either() and other()
   public int to() {
      return w;
   }
   public double weight() {
      return weight;
```



Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.

public class EdgeWeightedDigraph		
	EdgeWeightedDigraph(int V)	
void	addEdge(DirectedEdge e)	
Iterable <directededge></directededge>	adj(int v)	
int	V()	

edge-weighted digraph with V vertices (and no edges)

add weighted directed edge e

edges incident from v

number of vertices

•

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph {
   private final int V;
   private final Bag<DirectedEdge>[] adj;
  public EdgeWeightedDigraph(int V) {
    this.V = V;
    adj = (Bag<Edge>[]) new Bag[V];
    for (int v = 0; v < V; v++)
       adj[v] = new Bag<>();
  }
```

```
public void addEdge(DirectedEdge e) {
 int v = e.from();
  adj[v].add(e);
}
```

```
public Iterable<DirectedEdge> adj(int v) {
   return adj[v];
```

add edge $e = v \rightarrow w$ only to v's adjacency list

Single-source shortest paths API

Goal. Find the shortest path from *s* to every other vertex.

public class SP

SP(EdgeWeightedDigraph G, int s)

double

distTo(int v)

Iterable <DirectedEdge> pathTo(int v)

boolean hasPathTo(int v)

shortest paths from s in digraph G

length of shortest path from s to v

shortest path from s to v

is there a path from s to v?

properties

APIs

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

Bellman–Ford algorithm


```
For each vertex v: distTo[v] = \infty.
```

```
For each vertex v: edgeTo[v] = null.
```

```
distTo[s] = 0.
```

Repeat V-1 times:

- Relax each edge.

for (int i = 1; i < G.V(); i++)
for (int v = 0; v < G.V(); v++)
for (DirectedEdge e : G.adj(v))
relax(e);</pre>

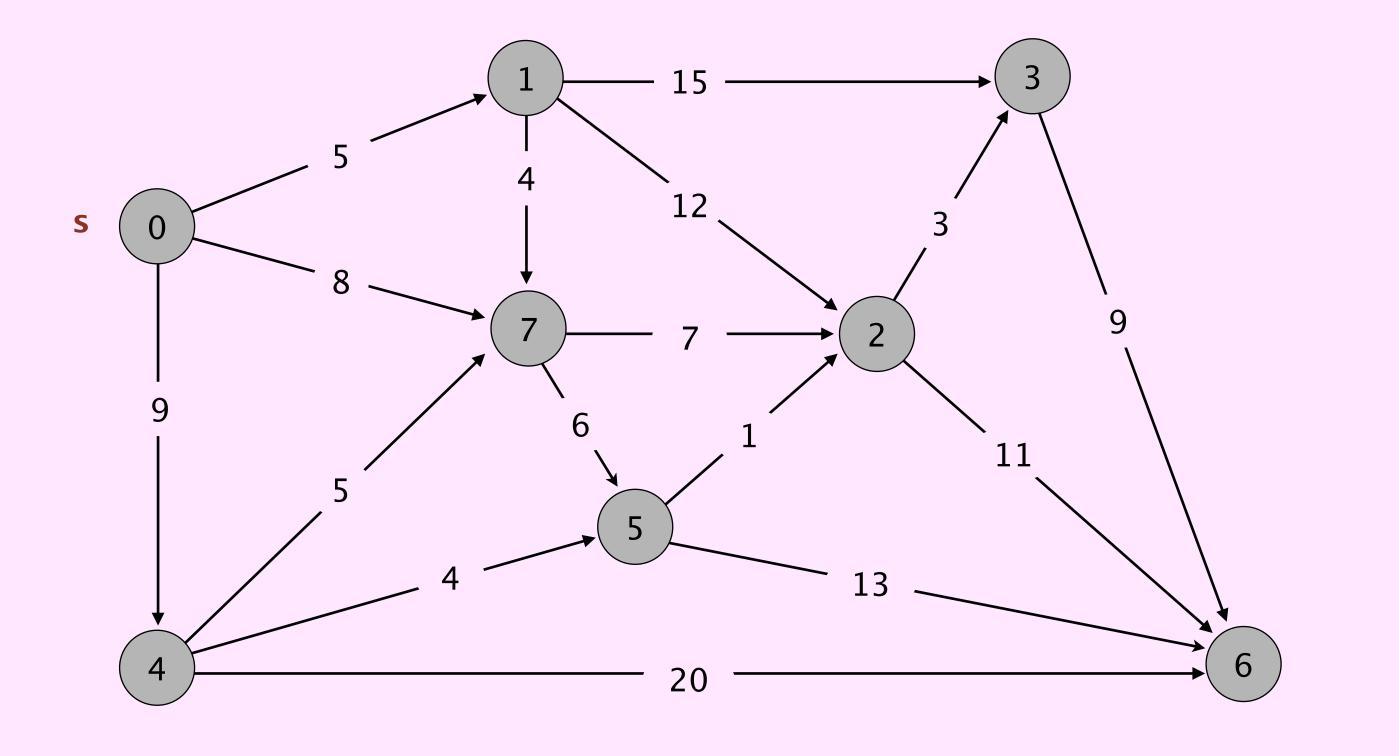
number of calls to relax() in pass i = E

Running time. Algorithm takes $\Theta(EV)$ time and uses $\Theta(V)$ extra space.

pass i (relax each edge once)

Bellman–Ford algorithm demo

Repeat V - 1 times: relax all *E* edges.

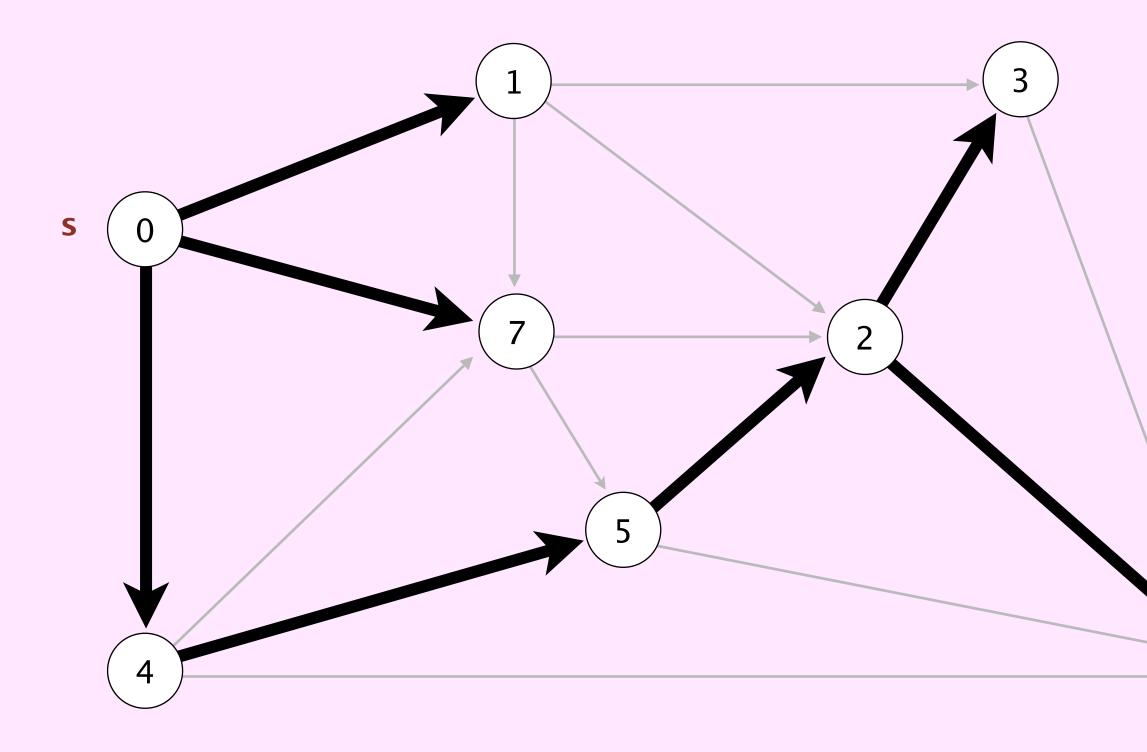


an edge-weighted digraph

0→1 5.0 9.0 0→4 0→7 8.0 1→2 12.0 1→3 15.0 1→7 4.0 3.0 2→3 2→6 11.0 3→6 9.0 4→5 4.0 4→6 20.0 5.0 4→7 5→2 1.0 5→6 13.0 7→5 6.0 7→2 7.0

Bellman–Ford algorithm demo

Repeat V - 1 times: relax all *E* edges.

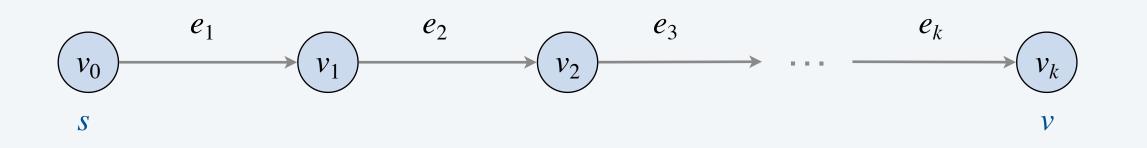


shortest-paths tree from vertex s

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

6

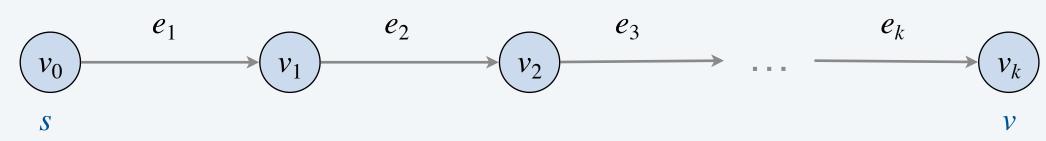
Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_k = v$ be any path from *s* to *v* consisting of *k* edges. Then, after pass k, distTo[v_k] \leq weight(e_1) + weight(e_2) + \cdots + weight(e_k).



Pf. [by induction on number of passes *i*]

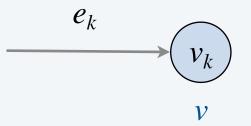
- Base case: initially, $0 = distTo[v_0] \leq 0$.
- Inductive hypothesis: after pass *i*, distTo[v_i] \leq weight(e_1) + weight(e_2) + \cdots + weight(e_i).
- This inequality continues to hold because distTo[v_i] cannot increase.
- Immediately after relaxing edge e_{i+1} in pass i + 1, we have $distTo[v_{i+1}] \leq distTo[v_i] + weight(e_{i+1}) \leftarrow edge relaxation$ \leq weight(e_1) + weight(e_2) + \cdots + weight(e_i) + weight(e_{i+1}). \leftarrow inductive hypothesis
- This inequality continues to hold because distTo[v_{i+1}] cannot increase.

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_k = v$ be any path from s to v consisting of k edges. Then, after pass k, distTo[v_k] \leq weight(e_1) + weight(e_2) + \cdots + weight(e_k).



Corollary. For each vertex v, Bellman–Ford computes length of shortest path from s to v. **Pf.** [apply Proposition to a shortest path from s to v]

- There exists a simple shortest path P^* from s to v; it contains $k \leq V 1$ edges.
- The Proposition implies that, after at most V-1 passes, distTo[v] $\leq length(P^*)$.
- Since distTo[v] is the length of some path from s to v, distTo[v] = $length(P^*)$.

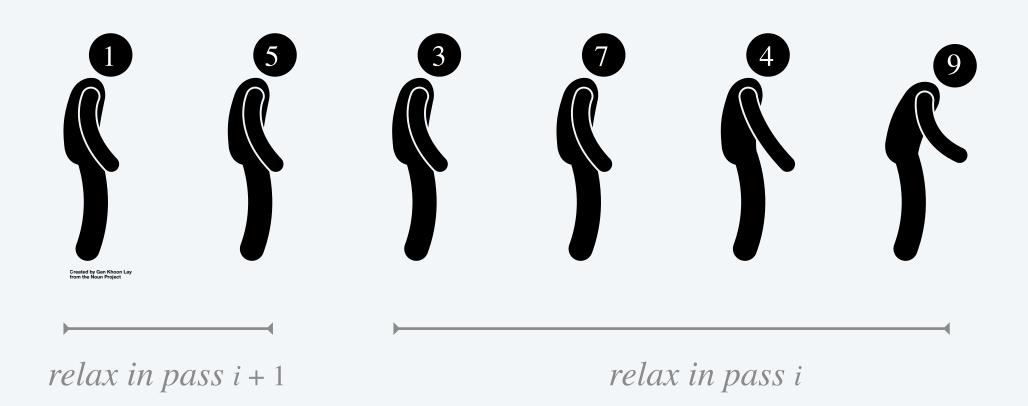


Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, not necessary to relax any edges incident from v in pass i + 1.

Queue-based implementation of Bellman-Ford.

- Maintain queue of vertices whose distTo[] values changed since it was last relaxed.



Impact.

- In the worst case, the running time is still $\Theta(EV)$.
- But much faster in practice on typical inputs.

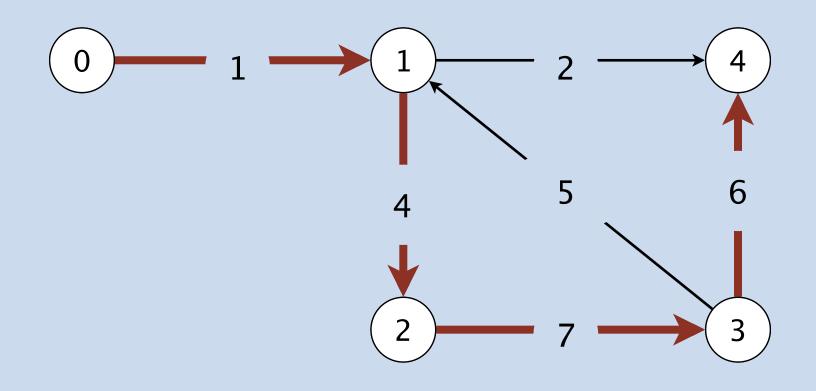
must ensure each vertex is on queue at most once (or exponential blowup!)

relax vertex v

Longest path

Problem. Given a digraph *G* with positive edge weights and source vertex *s*, find a longest simple path from *s* to every other vertex.

Goal. Design an algorithm that takes $\Theta(EV)$ time in the worst case.



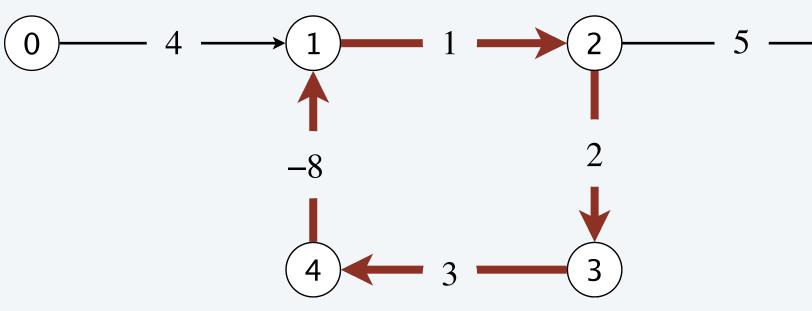
longest simple path from 0 to 4le $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

length of path = 18 (1 + 4 + 7 + 6)

Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some edge weights are negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.



negative cycle (length = 1 + 2 + 3 + -8 = -2 < 0)

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

$$0 \to 1 \to 2 \to 3 \to 4 \to 1 \to \cdots \to 2 \to 3 \to 4 \to 1$$

 $\rightarrow 2 \rightarrow 5$

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

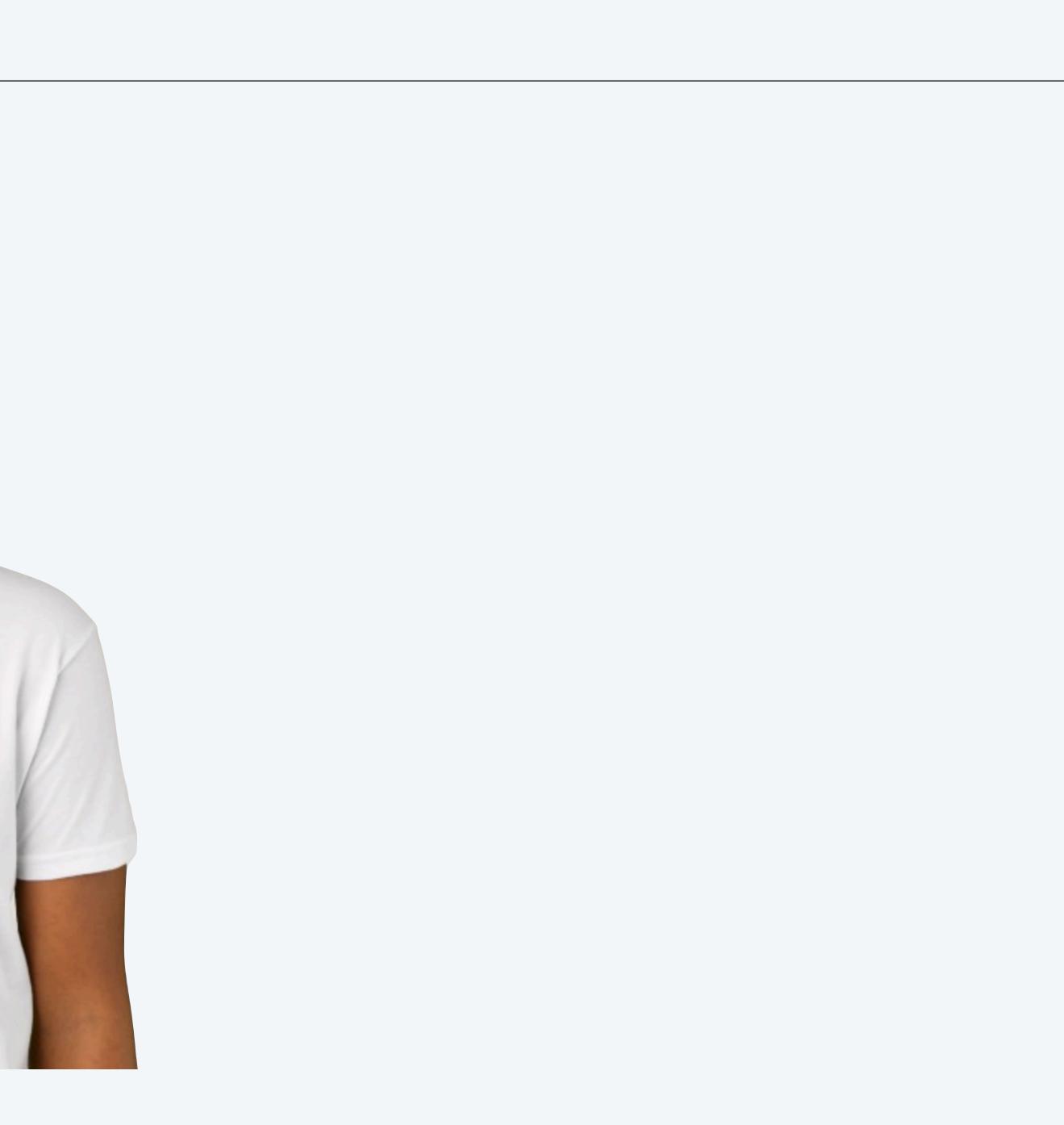
properties

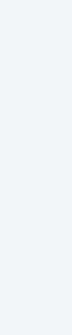
APIs

Edsger W. Dijkstra: select quote

"Object-oriented programming is an exceptionally bad idea which could only have originated in California." -- Edsger Dijkstra

-






```
For each vertex v: distTo[v] = \infty.
For each vertex v: edgeTo[v] = null.
```

 $T = \emptyset$.

```
distTo[s] = 0.
```

Repeat until all vertices are marked:

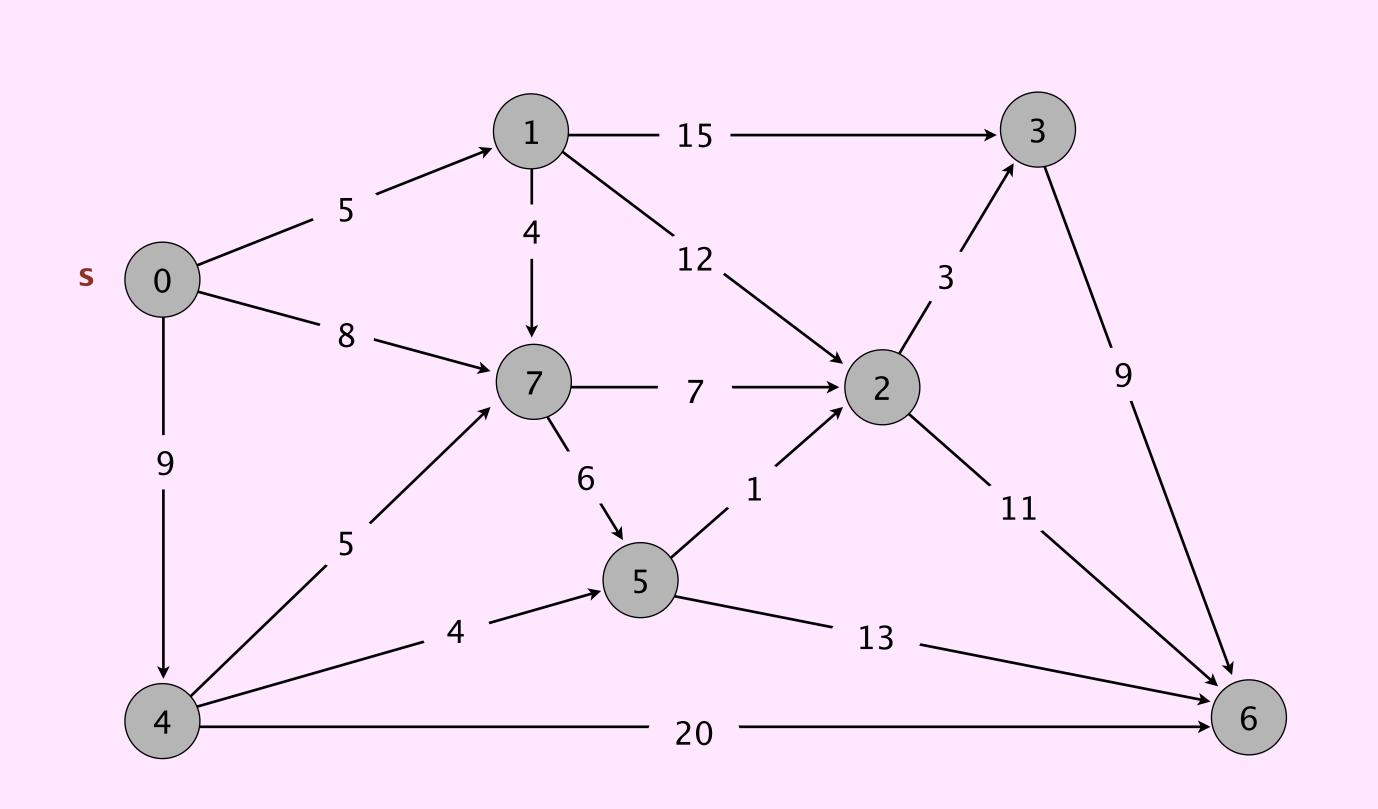
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.
- Relax each edge incident from v.

Key difference with Bellman–Ford. Each edge gets relaxed exactly once!

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.



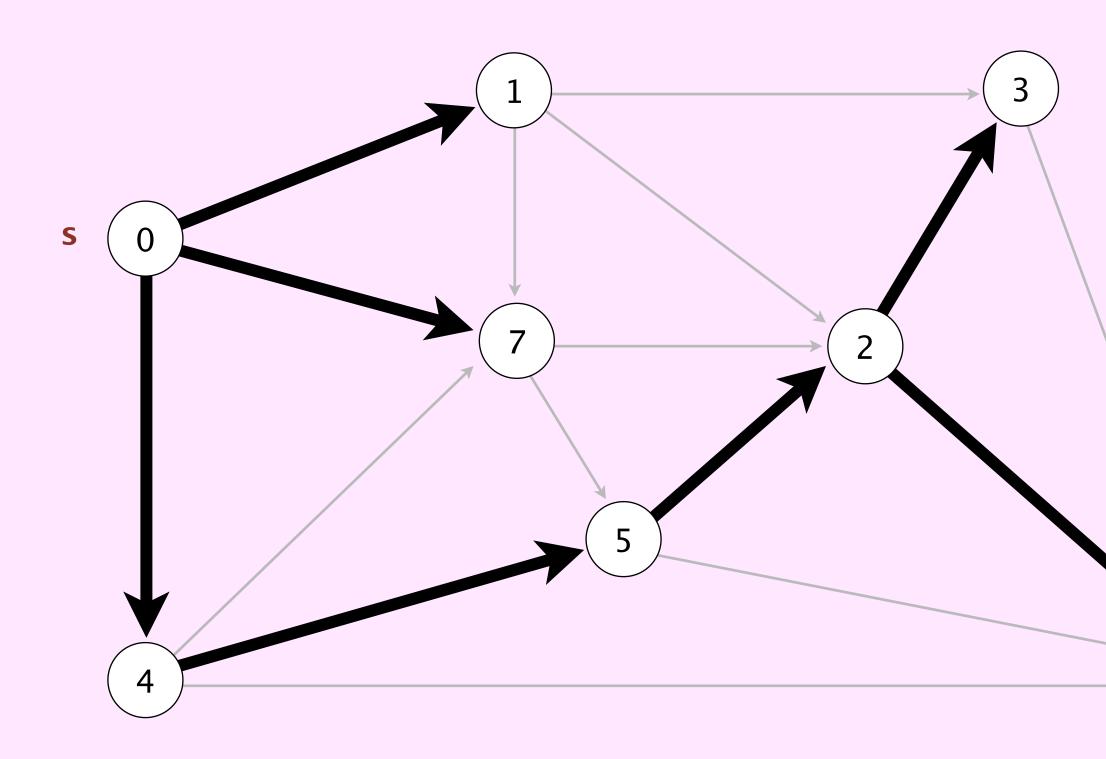
an edge-weighted digraph

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.



shortest-paths tree from vertex s

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

6

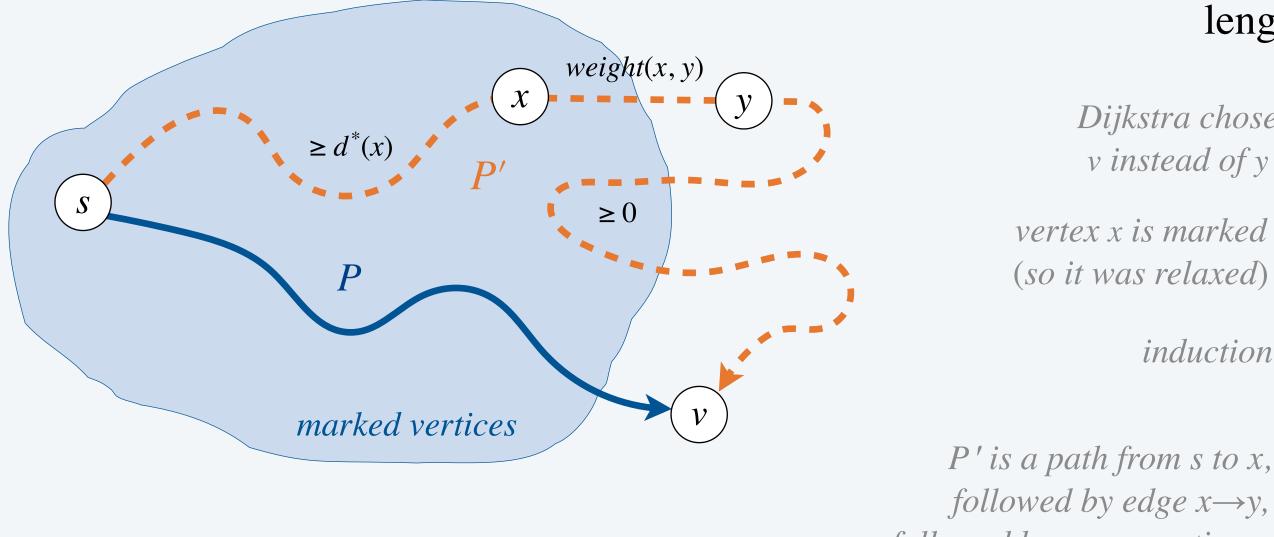
 \sim

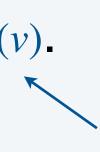
Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = $d^*(v)$.

Pf. [by induction on number of marked vertices]

- Let v be next vertex marked.
- Let P be the path from s to v of length distTo[v].
- Consider any other path P' from s to v.
- Let $x \rightarrow y$ be first edge in P' with x marked and y unmarked.
- P' is already as long as P by the time it reaches y :





length of shortest path from s to v

by construction = distTo[v] length(P)Dijkstra chose \leq distTo[y] v instead of y vertex x is marked \rightarrow \leq distTo[x] + weight(x, y) (so it was relaxed) induction \longrightarrow = $d^*(x)$ + weight(x, y) P' is a path from s to x, $\longrightarrow \leq \text{length}(P')$. followed by non-negative edges

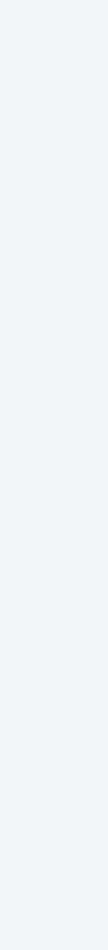
Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = $d^*(v)$.

Corollary 1. Dijkstra's algorithm computes shortest path distances.Corollary 2. Dijkstra's algorithm relaxes vertices in increasing order of distance from *s*.

length of shortest path from s to v

generalizes both level-order traversal in a tree and breadth-first search in a graph



Dijkstra's algorithm: Java implementation

```
public class DijkstraSP {
  private DirectedEdge[] edgeTo;
  private double[] distTo;
  private IndexMinPQ<Double> pq;
  public DijkstraSP(EdgeWeightedDigraph G, int s) {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty()) {
         int v = pq.delMin();
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

PQ that supports decreasing the key (stay tuned)

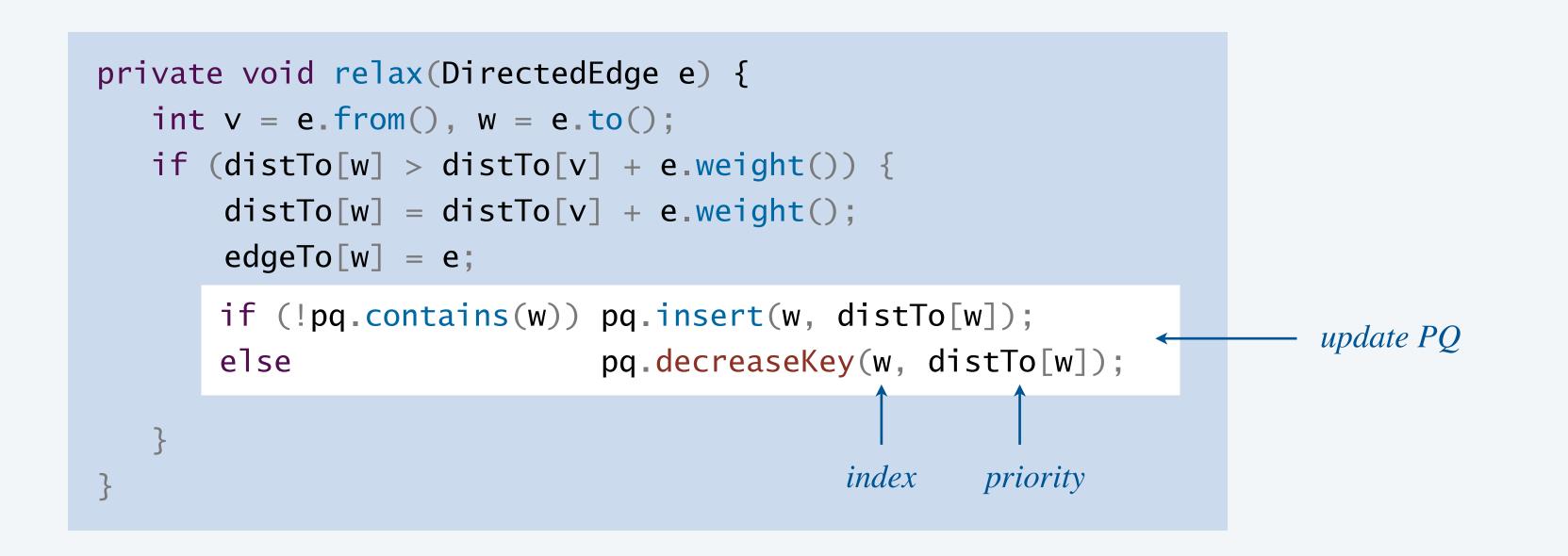
PQ contains the unmarked vertices with finite distTo[] values

relax vertices in increasing order of distance from s

Dijkstra's algorithm: Java implementation

When relaxing an edge, also update PQ:

- Found first path from s to w : add vertex w to PQ.
- Found better path from s to w : decrease priority associated with vertex w in PQ.



Q. How to efficiently implement DECREASE-KEY operation in a priority queue?

Indexed priority queue (Section 2.4)

Associate an index between 0 and n - 1 with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

public class IndexMinPQ<Key extends Comparable<Key>>

	IndexMinPQ(int n)	create PQ
void	insert(int i, Key key)	associate
int	delMin()	remove m
void	decreaseKey(int i, Key key)	decrease i
boolean	isEmpty()	is the pric

for Dijkstra's algorithm: n = V, *index = vertex, key* = *distance from s*

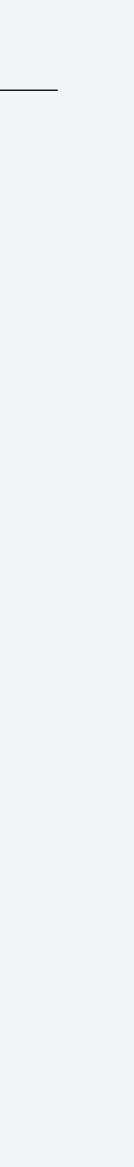
Q with indices 0, 1, ..., n - 1

key with index i

nin key and return associated index

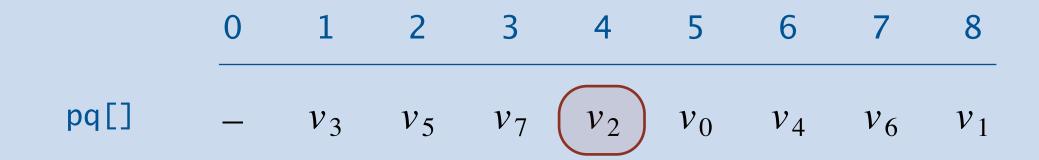
the key associated with index i

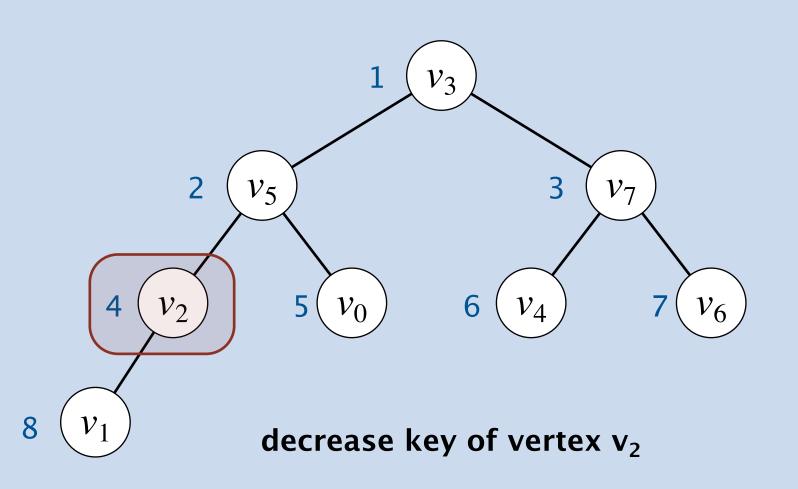
iority queue empty?



Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.





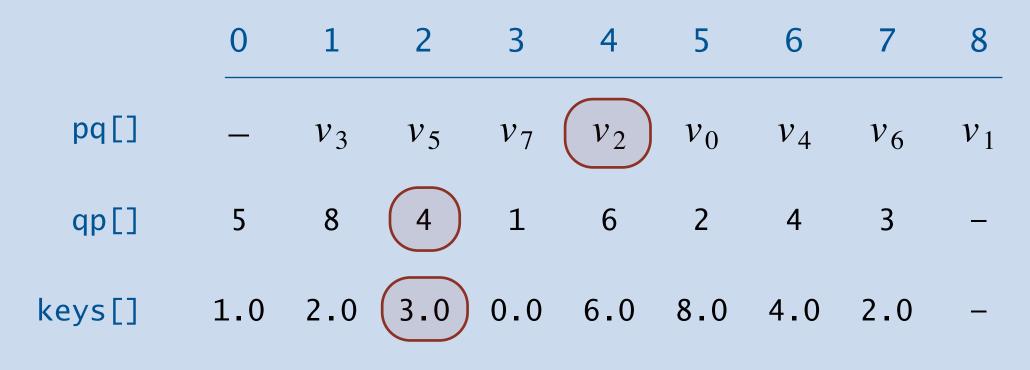
Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

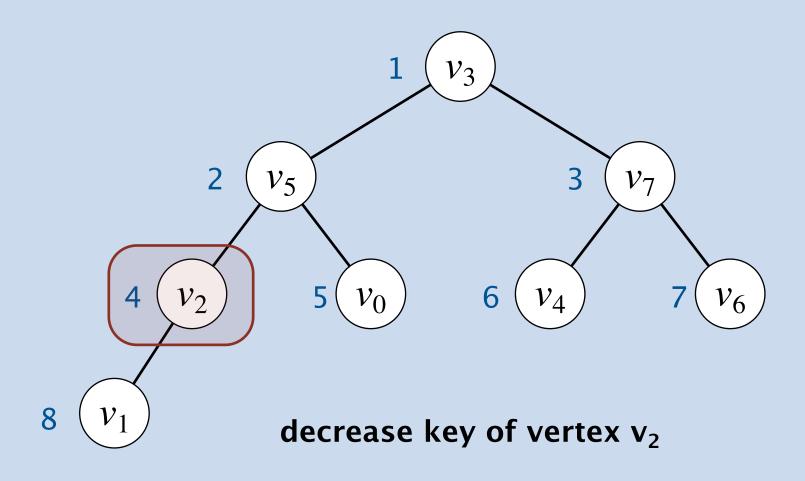
Solution.

- Find vertex in binary heap. How?
- Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array qp[] that maps from the vertex to the binary heap node index.



vertex 2 has priority 3.0 and is at heap index 4



Dijkstra's algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, $\leq E$ DECREASE-KEY.

PQ implementation	INSERT	Delete-Min	Decrease-Key	total
unordered array	1	V	1	V^2
binary heap	log V	log V	log V	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1	$\log V^{\dagger}$	1	$E + V \log V$
				+ amortized

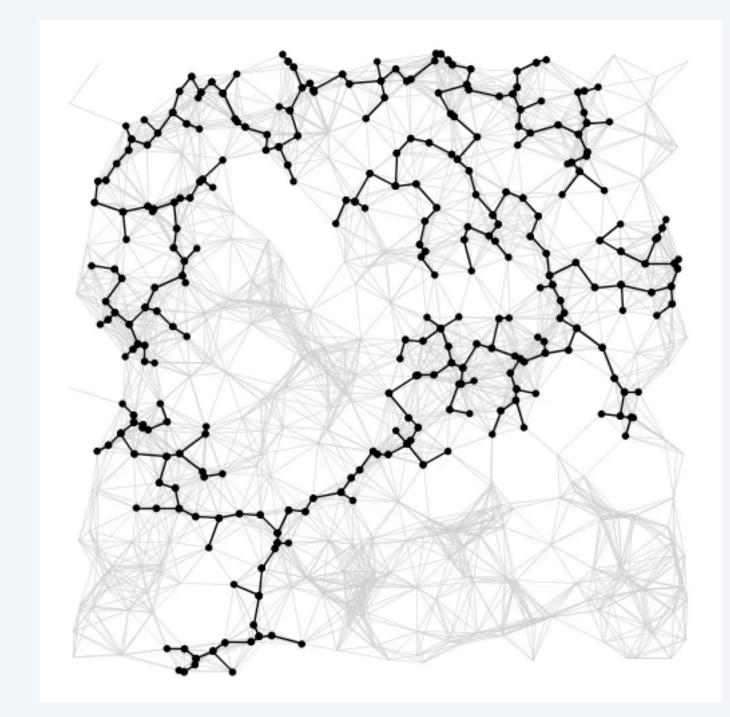
Bottom line.

- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but probably not worth implementing.

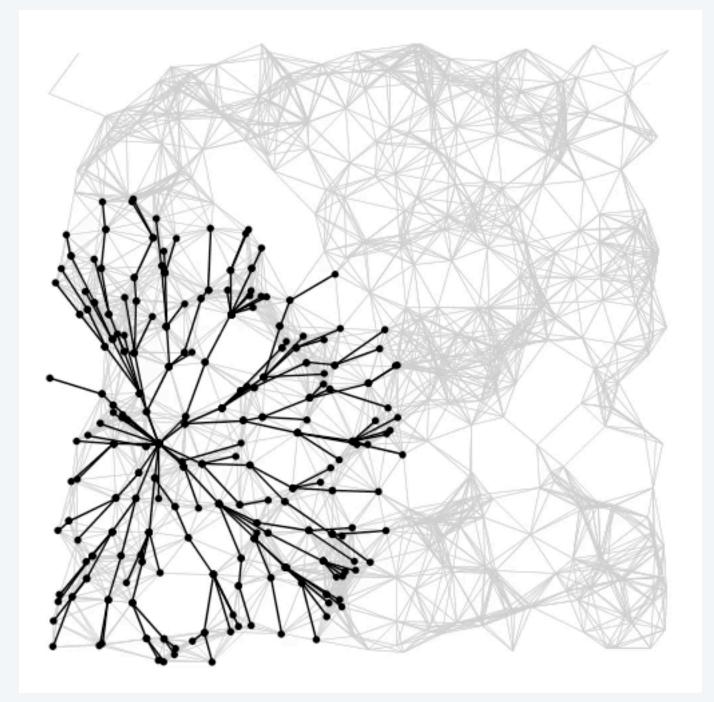
amortizea

Observation. Prim and Dijkstra are essentially the same algorithm.

- Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).
- Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).



Prim's algorithm



Dijkstra's algorithm

Algorithms for shortest paths

Variations on a theme: vertex relaxations.

- relax all vertices; repeat V-1 times. • Bellman-Ford:
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order. ←

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	$\Theta(E V)$		~
Dijkstra	$\Theta(E \log V)$		✓
topological sort	E		

see Section 4.4 and next lecture

† no negative cycles

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Non-negative weights: Dijkstra.
- Negative weights (but no "negative cycles"): Bellman-Ford.
- DAG: topological sort.

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	$\Theta(E V)$		
Dijkstra	$\Theta(E \log V)$		✓
topological sort	E		

† no negative cycles

Credits

image

Map of Princeton, N.J.

Broadway Tower

Car GPS

Queue for Registration

Dijkstra T-shirt

Edsger Dijkstra

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

source	license
Google Maps	
<u>Wikimedia</u>	<u>CC BY 2.5</u>
Adobe Stock	education license
Noun Project	<u>CC BY 3.0</u>
Zazzle	
<u>Wikimedia</u>	<u>CC BY-SA 3.0</u>

A final thought

" Do only what only you can do."

— Edsger W. Dijkstra

