
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/3/25 9:22  AM

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Google maps

2

Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex.

3

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

edge-weighted digraph

0.26

0.39

0.3
4

0.52

see Assignment 6

・PERT/CPM.

・Map routing.

・Seam carving.

・Texture mapping.

・Robot navigation.

・Typesetting in .

・Currency exchange.

・Urban traffic planning.

・Optimal pipelining of VLSI chip.

・Telemarketer operator scheduling.

・Routing of telecommunications messages.

・Network routing protocols (OSPF, BGP, RIP).

・Optimal truck routing through given traffic congestion pattern.

Shortest path applications

4

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Which vertices?

・Source–destination: from one vertex to another vertex.

・Single source: from one vertex to every vertex.

・Single destination: from every vertex to one vertex.

・All pairs: between all pairs of vertices.
 
Restrictions on edge weights?

・Non-negative weights.

・Euclidean weights.

・Arbitrary weights.
 
Directed cycles?

・Prohibit.

・Allow.
 
Simplifying assumption. Each vertex is reachable from .s

Shortest path variants

5

we assume this in today’s lecture
(except as noted)

implies that shortest path from s to v exists
(and that E ≥ V − 1)

can derive faster algorithms in DAGs
(see next lecture)

Shortest paths: poll 1

Which shortest path variant for car GPS?
Hint: drivers make wrong turns occasionally.

A. Source–destination: from one vertex to another vertex.

B. Single source: from one vertex to every vertex.

C. Single destination: from every vertex to one vertex.

D. All pairs: between all pairs of vertices.

6

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find a shortest path from to every vertex.  

Observation 1. There exists a shortest path from to that is simple.
 
Observation 2. A shortest-paths tree (SPT) solution exists. Why?
 
Consequence. Can represent shortest paths with two vertex-indexed arrays:

・ distTo[v] is length of a shortest path from to .

・ edgeTo[v] is last edge on a shortest path from to .

s

s v

s v

s v

8

no repeated vertices
 ≤ V − 1 edges⟹

s 1

2 3

t

4s 1

2 3

v

4

shortest-paths tree from 0

0

4

7

1

5

2

6

3

parent-link representation

v distTo[] edgeTo[]

0 0.0 -
1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

Edge relaxation

Relax edge → .

・ distTo[v] is length of shortest known path from to .

・ distTo[w] is length of shortest known path from to .

・ edgeTo[w] is last edge on shortest known path from to .

・If → yields shorter path from to , via , update distTo[w] and edgeTo[w].

e = v w

s v

s w

s w

e = v w s w v

9

black edges
are in edgeTo[]

s

distTo[v] = 3.1

distTo[w] = 7.2

4.4

relax edge e = v→w

1.3

v

w

What are the values of distTo[v] and distTo[w] after relaxing edge → ?  

A. 10.0 and 15.0

B. 10.0 and 17.0

C. 12.0 and 15.0

D. 12.0 and 17.0

e = v w

Shortest paths: poll 2

10

distTo[v] = 10.0

distTo[w] = 17.0

s
5.0

v

w

15.0
distTo[w] = 17.0

Framework for shortest-paths algorithm

 
 
 
 
 
 
 
 
 
Key properties. Throughout the generic algorithm,

・ distTo[v] is either infinity or the length of a (simple) path from to .

・ distTo[v] does not increase.
s v

11

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

Framework for shortest-paths algorithm

 
 
 
 
 
 
 
 
 
Efficient implementations.

・Which edge to relax next?

・How many edge relaxations needed to guarantee convergence?
 
Ex 1. Bellman–Ford algorithm.
Ex 2. Dijkstra’s algorithm.
Ex 3. Topological sort algorithm.

12

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until distTo[v] values converge: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

next lecture

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted directed edge API

API.  
 
 
 
 
 
 
 

Ex. Relax edge → .e = v w

14

private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
}

v w1.3

distTo[w] = 7.2

4.4

distTo[v] = 3.1

public class DirectedEdge

DirectedEdge(int v, int w, double weight) create weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

 ⋮ ⋮

Weighted directed edge: implementation in Java

15

public class DirectedEdge {
 private final int v, w;
 private final double weight;

}

public DirectedEdge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
}

public int from() {
 return v;
}

public int to() {
 return w;
}

public double weight() {
 return weight;
}

from() and to() replace
either() and other()

Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.

16

 public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices (and no edges)

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges incident from v

int V() number of vertices

 ⋮ ⋮

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

17

public class EdgeWeightedDigraph {
 private final int V;
 private final Bag<DirectedEdge>[] adj;

}

public EdgeWeightedDigraph(int V) {
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<>();
}

public void addEdge(DirectedEdge e) {
 int v = e.from();
 adj[v].add(e);
}

public Iterable<DirectedEdge> adj(int v) {
 return adj[v];
}

add edge e = v→w only
to v's adjacency list

Single-source shortest paths API

Goal. Find the shortest path from to every other vertex.s

18

public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v ?

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Bellman–Ford algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Running time. Algorithm takes time and uses extra space.Θ(E V) Θ(V)

20

for (int i = 1; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);

pass i (relax each edge once)

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times: 
 - Relax each edge.

Bellman–Ford algorithm
 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
 }

number of calls to relax() in pass i = E

Bellman–Ford algorithm demo

Repeat times: relax all edges.V − 1 E

21

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5 4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

Bellman–Ford algorithm demo

Repeat times: relax all edges.V − 1 E

22

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Bellman–Ford algorithm: correctness proof

Proposition. Let s = v0 → v1 → … → vk = v be any path from to consisting of edges.
Then, after pass , distTo[vk] ≤ weight(e1) + weight(e2) + … + weight(ek).
 
 
 
 
Pf. [by induction on number of passes i]

・Base case: initially, 0 = distTo[v0] ≤ 0.

・Inductive hypothesis: after pass , distTo[vi] ≤ weight(e1) + weight(e2) + … + weight(ei).

・This inequality continues to hold because distTo[vi] cannot increase.

・Immediately after relaxing edge in pass , we have  
 distTo[vi+1] ≤ distTo[vi] + weight(ei+1)

 ≤ weight(e1) + weight(e2) + … + weight(ei) + weight(ei+1).

・This inequality continues to hold because distTo[vi+1] cannot increase.

s v k
k

i

ei+1 i + 1

23

v0 v1 vk…
s v

e1 e2 ek
v2

e3

edge relaxation

inductive hypothesis

Bellman–Ford algorithm: correctness proof

Proposition. Let s = v0 → v1 → … → vk = v be any path from to consisting of edges.
Then, after pass , distTo[vk] ≤ weight(e1) + weight(e2) + … + weight(ek).
 

Corollary. For each vertex , Bellman–Ford computes length of shortest path from to .
Pf. [apply Proposition to a shortest path from s to v]

・There exists a simple shortest path from to ; it contains ≤ edges.

・The Proposition implies that, after at most passes, distTo[v] ≤ .

・Since distTo[v] is the length of some path from to , distTo[v] = .

s v k
k

v s v

P* s v k V − 1
V − 1 length(P*)

s v length(P*)

24

v0 v1 vk…
s v

e1 e2 ek
v2

e3

Bellman–Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass ,  
not necessary to relax any edges incident from in pass .
 
Queue-based implementation of Bellman–Ford.

・Perform vertex relaxations.

・Maintain queue of vertices whose distTo[] values changed since it was last relaxed.
 
 
 
 
 
 
 
Impact.

・In the worst case, the running time is still .

・But much faster in practice on typical inputs.

i

v i + 1

Θ(E V)

25

relax in pass irelax in pass i + 1

Created by Gan Khoon Lay
from the Noun Project

relax vertex v

1 47 935
must ensure each vertex is on queue at most once

(or exponential blowup!)

relax vertex v = relax all edges incident from v

Longest path

Problem. Given a digraph with positive edge weights and source vertex ,  
find a longest simple path from to every other vertex.
 
Goal. Design an algorithm that takes time in the worst case.

G s
s

Θ(E V)

40 1

2 3

40 1

2 3

26

2

6

7

4

1

5

NP-com
ple te

length of path = 18
(1 + 4 + 7 + 6)

longest simple path from 0 to 4
0 → 1 → 2 → 3 → 4

Bellman–Ford algorithm: negative weights

Remark. The Bellman–Ford algorithm works even if some edge weights are negative,  
provided there are no negative cycles.
 
Negative cycle. A directed cycle whose length is negative.
 
 
 
 
 
 
 
 
Negative cycles and shortest paths. Length of path can be made arbitrarily negative  
by using negative cycle.

27

0→ 1→ 2→ 3→ 4→ 1→ … → 2→ 3→ 4→ 1→ 2→ 5

negative cycle
(length = 1 + 2 +3 + -8 = -2 < 0)

20 1

4

5

3

21

4 3

1

2

3

4 5

−8

4.4 SHORTEST PATHS

‣ properties

‣APIs

‣ Bellman–Ford algorithm

‣Dijkstra’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quote

29

Dijkstra's algorithm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Key difference with Bellman–Ford. Each edge gets relaxed exactly once!

30

For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.

T = ∅.
distTo[s] = 0.
Repeat until all vertices are marked:
 - Select unmarked vertex v with the smallest distTo[] value.
 - Mark v.
 - Relax each edge incident from v.

Dijkstra's algorithm

Dijkstra’s algorithm demo

Repeat until all vertices are marked:

・Select unmarked vertex with the smallest distTo[] value.

・Mark v and relax all edges incident from .
v

v

31

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5 4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

Dijkstra’s algorithm demo

Repeat until all vertices are marked:

・Select unmarked vertex with the smallest distTo[] value.

・Mark v and relax all edges incident from .
v

v

32

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex : distTo[v] = d*(v).
 
Pf. [by induction on number of marked vertices]

・Let be next vertex marked.

・Let P be the path from to of length distTo[v].

・Consider any other path from to .

・Let → be first edge in with marked and unmarked.

・ is already as long as by the time it reaches :

v

v
s v

P′ s v
x y P′ x y

P′ P y

33

P′

marked vertices

P

length(P) = distTo[v]

≤ distTo[y]

≤ distTo[x] + weight(x, y)

≤ length(P ′)

Dijkstra chose
v instead of y

yx

v

s

length of shortest path from s to v

= d*(x) + weight(x, y)

by construction

vertex x is marked
(so it was relaxed)

induction

followed by non-negative edges

▪

≥ d *(x)

weight(x, y)

≥ 0

P ′ is a path from s to x,
followed by edge x→y,

Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex : distTo[v] = d*(v).
 
 
 
Corollary 1. Dijkstra’s algorithm computes shortest path distances.
Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from .

v

s

34

generalizes both
level-order traversal in a tree

and breadth-first search in a graph

length of shortest path from s to v

Dijkstra’s algorithm: Java implementation

35

public class DijkstraSP {
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 }
}

private IndexMinPQ<Double> pq;

pq = new IndexMinPQ<Double>(G.V());

pq.insert(s, 0.0);
while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
}

relax vertices in increasing order
of distance from s

PQ that supports
decreasing the key

(stay tuned)

PQ contains the
unmarked vertices

with finite distTo[] values

Dijkstra’s algorithm: Java implementation

When relaxing an edge, also update PQ:

・Found first path from to : add vertex to PQ.

・Found better path from to : decrease priority associated with vertex in PQ.
 
 
 
 
 
 
 
 
 
 
 
 
Q. How to efficiently implement DECREASE-KEY operation in a priority queue?

s w w
s w w

36

private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;

 }
}

if (!pq.contains(w)) pq.insert(w, distTo[w]);
else pq.decreaseKey(w, distTo[w]);

update PQ

index priority

Indexed priority queue (Section 2.4)

Associate an index between and with each key in a priority queue.

・Insert a key associated with a given index.

・Delete a minimum key and return associated index.

・Decrease the key associated with a given index.

0 n − 1

37

for Dijkstra’s algorithm:
n = V,

index = vertex,
key = distance from s

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create PQ with indices 0, 1, … , n − 1

void insert(int i, Key key) associate key with index i

int delMin() remove min key and return associated index

void decreaseKey(int i, Key key) decrease the key associated with index i

boolean isEmpty() is the priority queue empty ?

 ⋮ ⋮

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.

0 1 2 3 4 5 6 7 8

 pq[] – v3 v5 v7 v2 v0 v4 v6 v1

38

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8

Decreasing the key in a binary heap

Goal. Implement DECREASE-KEY operation in a min-oriented binary heap.
 
Solution.

・Find vertex in binary heap. How?

・Change priority of vertex and call swim() to restore heap invariant.
 
Extra data structure. Maintain an inverse array qp[] that maps from the vertex  
to the binary heap node index.

0 1 2 3 4 5 6 7 8

 pq[] – v3 v5 v7 v2 v0 v4 v6 v1

 qp[] 5 8 4 1 6 2 4 3 –

keys[] 1.0 2.0 3.0 0.0 6.0 8.0 4.0 2.0 –

39

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8
vertex 2 has priority 3.0
and is at heap index 4

Dijkstra’s algorithm: which priority queue?

Number of PQ operations: INSERT, DELETE-MIN, ≤ DECREASE-KEY.
 
 
 
 
 
 
 
 
 
 
Bottom line.

・Array implementation optimal for complete digraphs.

・Binary heap much faster for sparse digraphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but probably not worth implementing.

V V E

40

† amortized

PQ implementation INSERT DELETE-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE / V V

Fibonacci heap 1 † log V † 1 † E + V log V

Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.

・Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).

・Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).

41

Prim’s algorithm Dijkstra’s algorithm

Algorithms for shortest paths

Variations on a theme: vertex relaxations.

・Bellman–Ford: relax all vertices; repeat times.

・Dijkstra: relax vertices in order of distance from .

・Topological sort: relax vertices in topological order.

V − 1
s

42

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford Θ(E V) ✔ ✔

Dijkstra Θ(E log V) ✔

topological sort E ✔

† no negative cycles

see Section 4.4
and next lecture

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

・Non-negative weights: Dijkstra.

・Negative weights (but no “negative cycles”): Bellman–Ford.

・DAG: topological sort.

43

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford Θ(E V) ✔ ✔

Dijkstra Θ(E log V) ✔

topological sort E ✔

† no negative cycles

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

44

image source license

Map of Princeton, N.J. Google Maps

Broadway Tower Wikimedia CC BY 2.5

Car GPS Adobe Stock education license

Queue for Registration Noun Project CC BY 3.0

Dijkstra T-shirt Zazzle

Edsger Dijkstra Wikimedia CC BY-SA 3.0

https://www.google.com/maps
https://commons.wikimedia.org/wiki/File:Broadway_tower.jpg
https://creativecommons.org/licenses/by/2.5/deed.en
https://stock.adobe.com/images/navigation-system-gps-3d/35938601
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://thenounproject.com/term/queue-for-registration/886294/
https://creativecommons.org/licenses/by/3.0/deed.en
http://www.zazzle.com/dijkstra_on_object_oriented_programming_and_cali_tshirt-235725459155842241
https://commons.wikimedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

A final thought

45

 “ Do only what only you can do. ”

 — Edsger W. Dijkstra

