Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

• edge-weighted graph API

Last updated on 4/1/25 7:38AM



4.3 MINIMUM SPANNING TREES

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

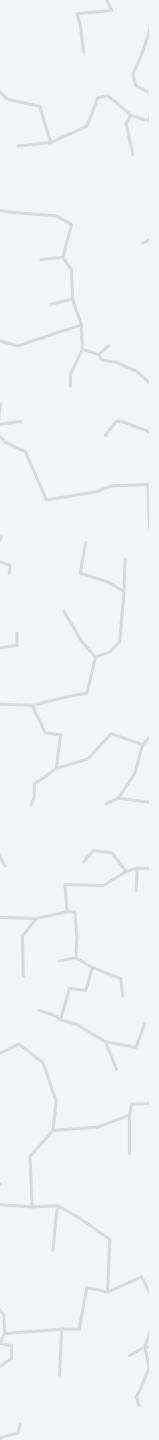
edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

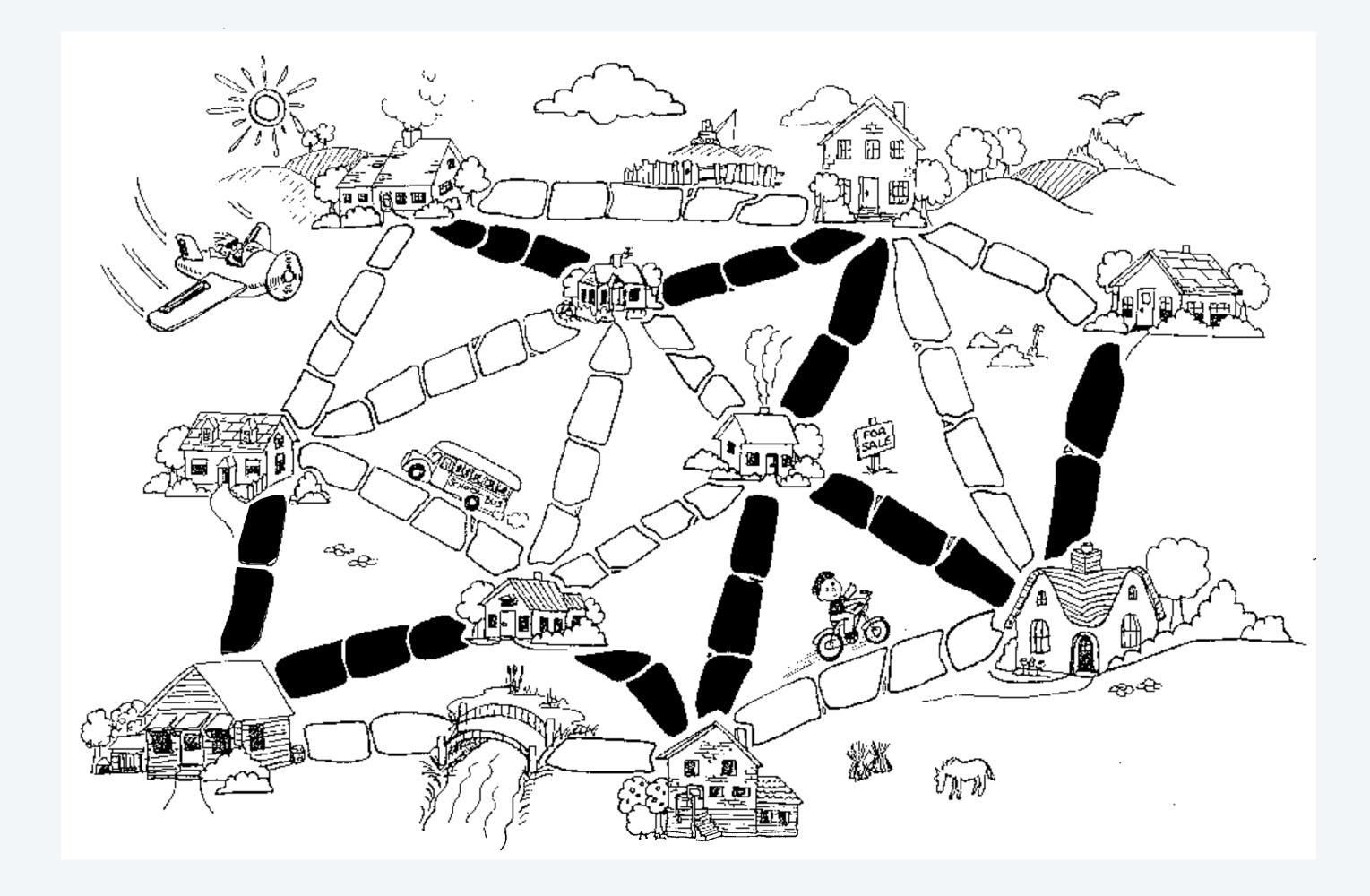
introduction

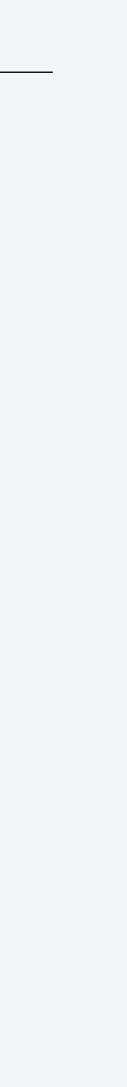
- cut property



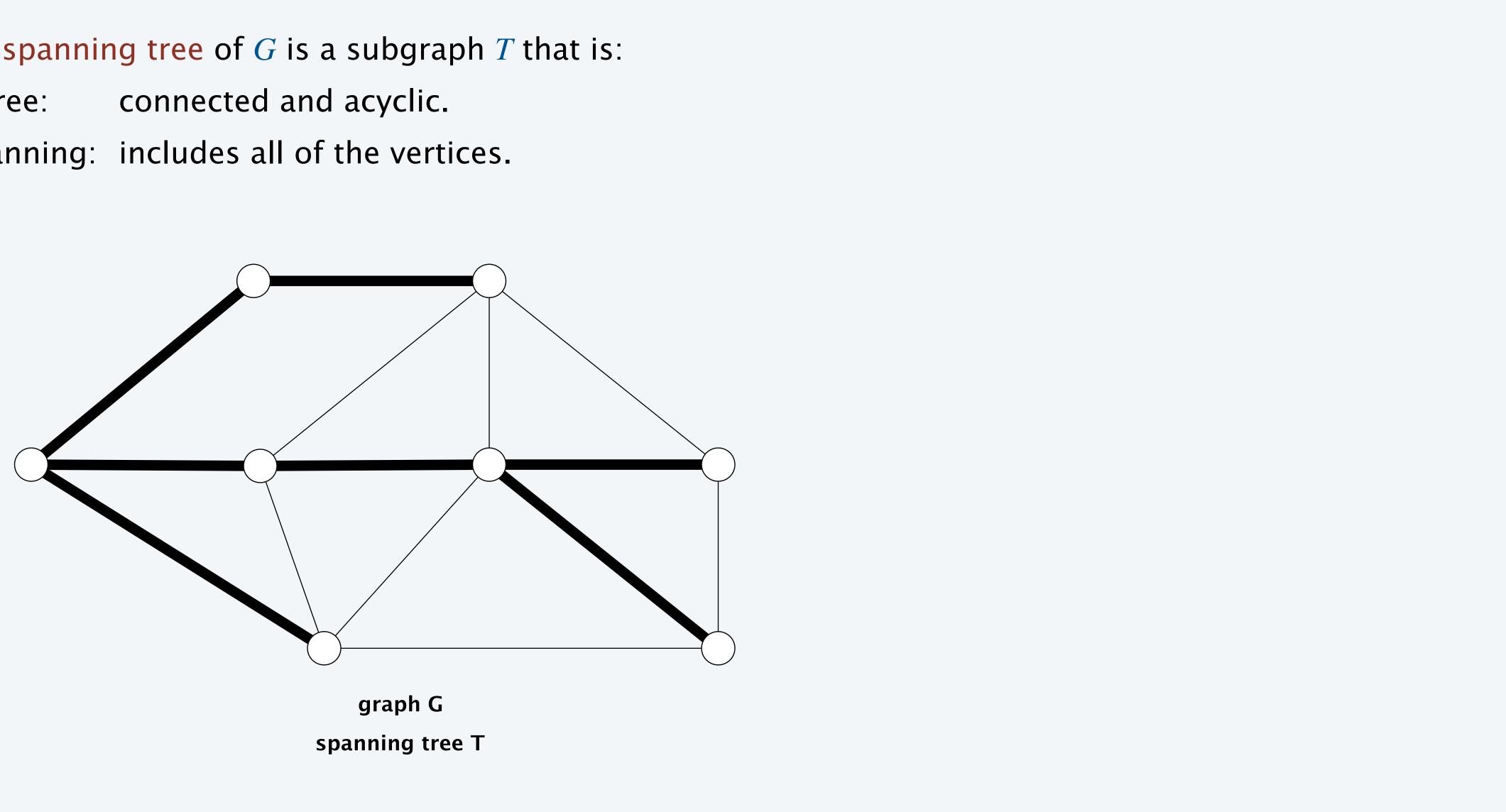
A motivating example

Install minimum number of paving stones to connect all of the houses.

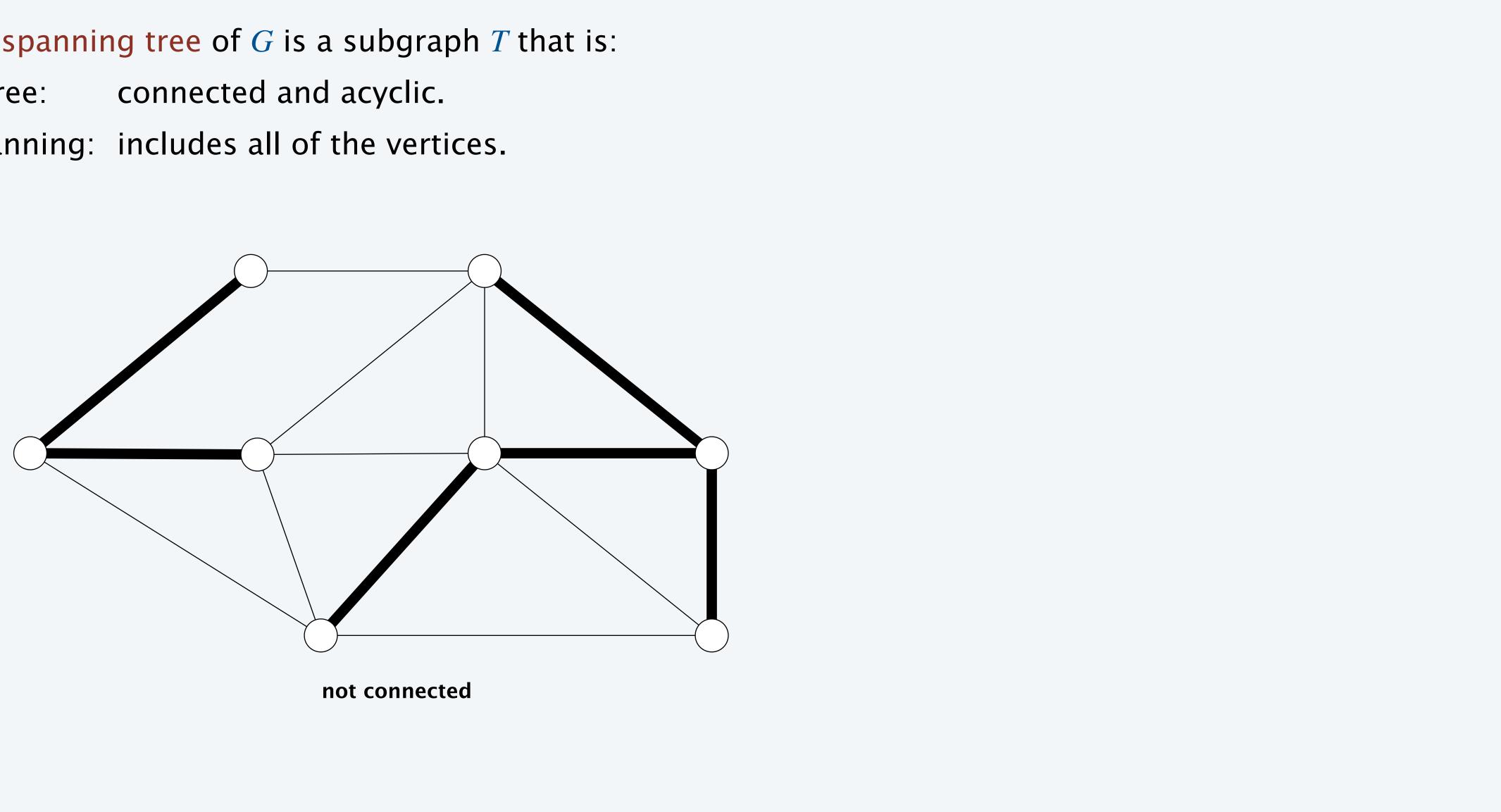




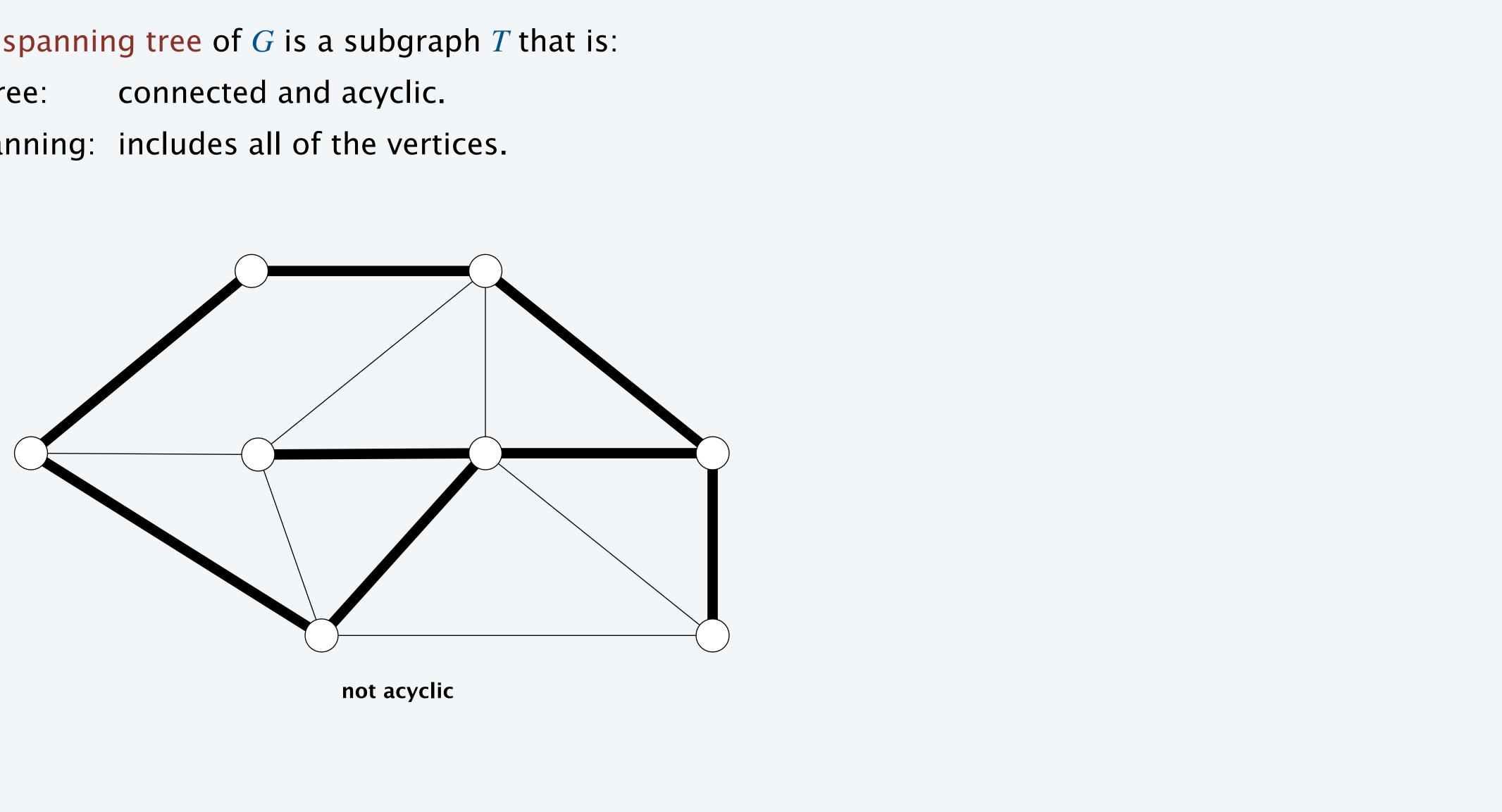
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

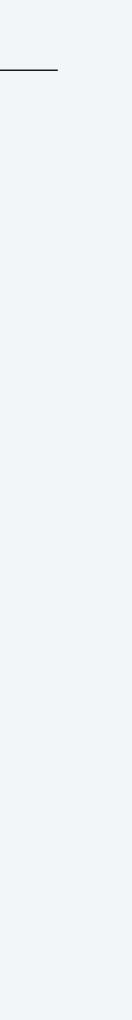


- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

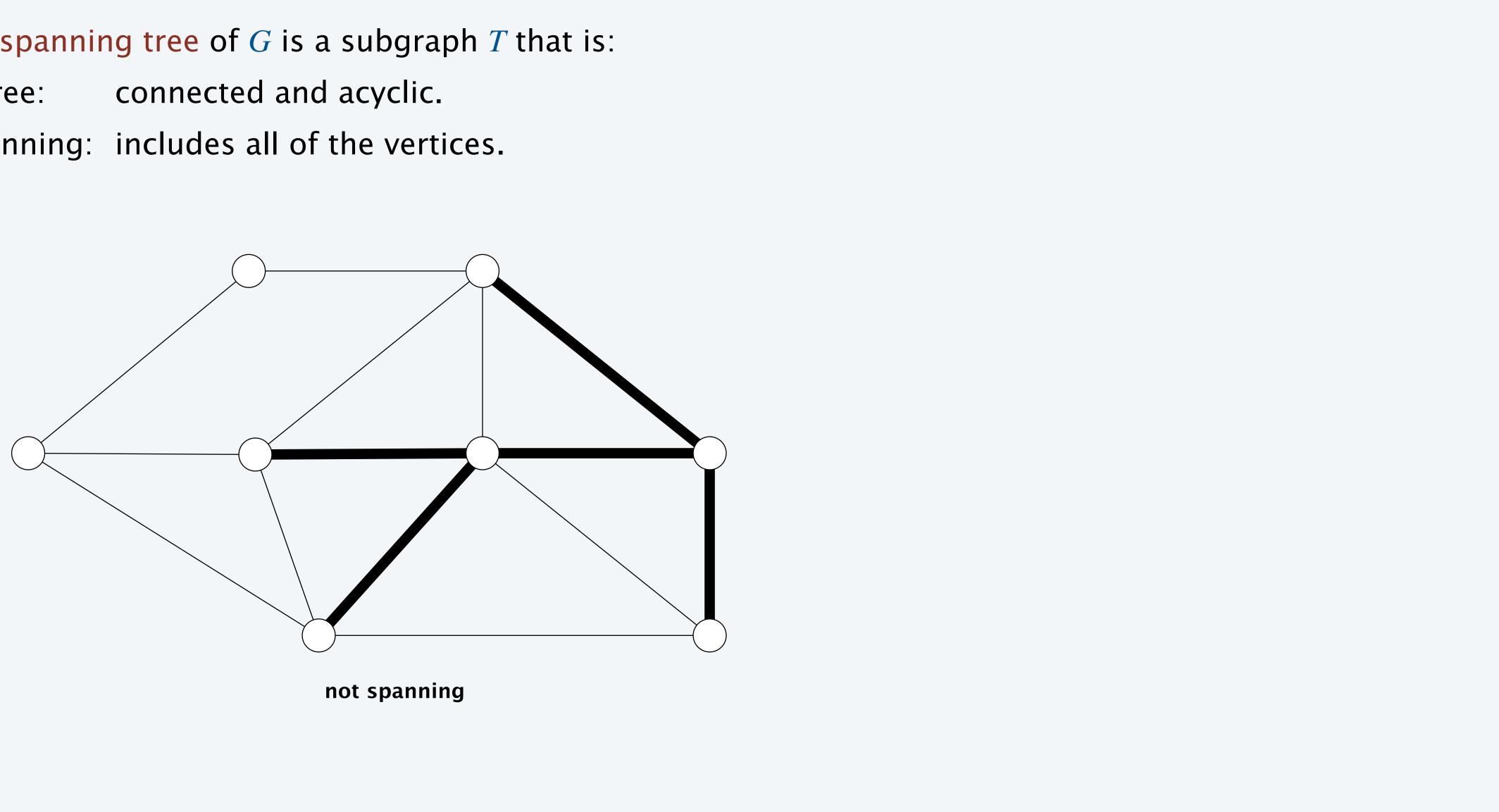


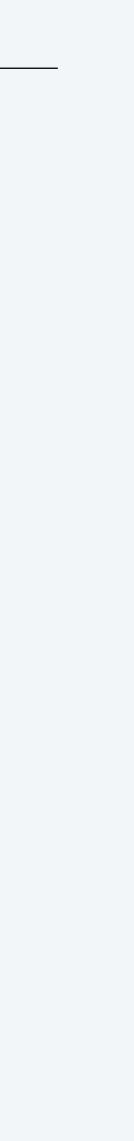
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.





- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

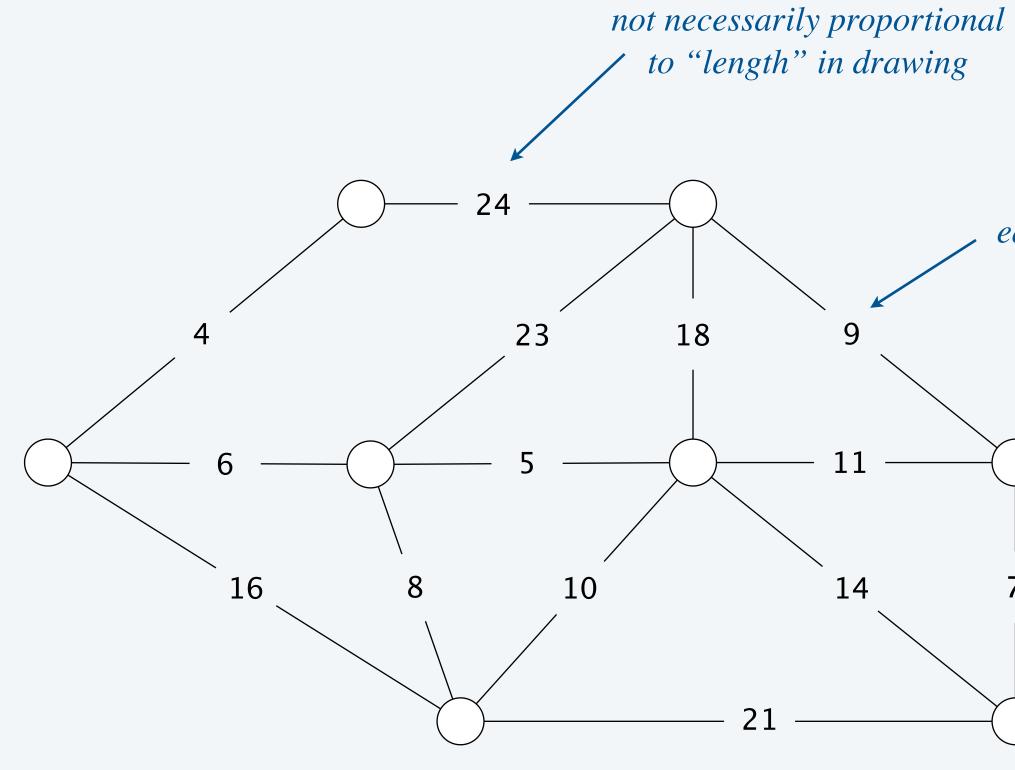




7

Minimum spanning tree problem

Input. Connected, undirected graph *G* with positive edge weights.

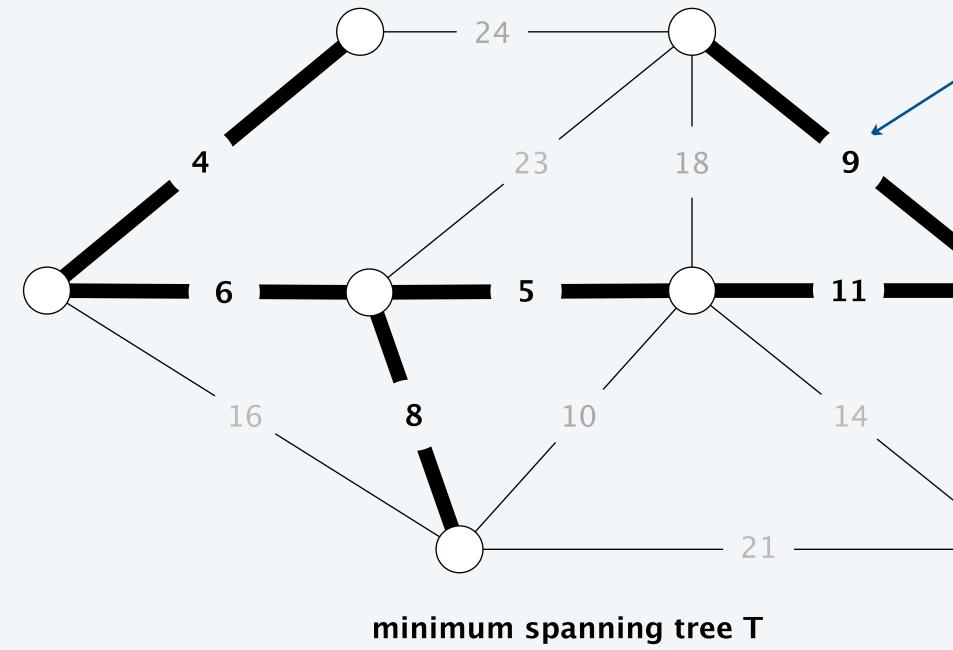


edge-weighted graph G

edge weight

Minimum spanning tree problem

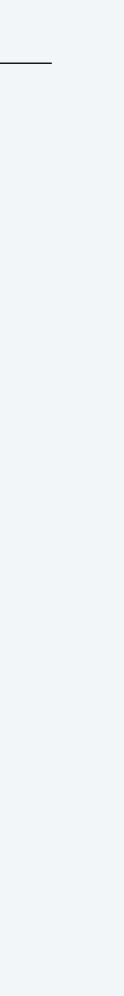
Input. Connected, undirected graph *G* with positive edge weights. Output. A spanning tree of minimum weight.



(weight = 50 = 4 + 6 + 5 + 8 + 9 + 11 + 7)

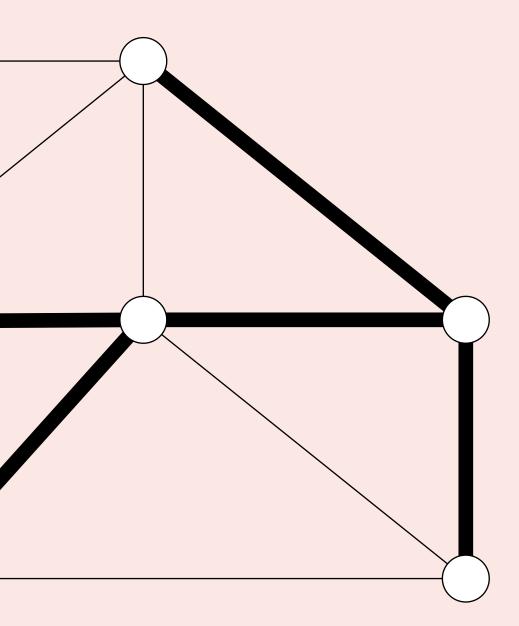
Brute force. Try all spanning trees?

edge weight



Let T be any spanning tree of a connected graph G with V vertices. Which of the following properties must hold?

- Removing any edge from T disconnects it. Α.
- Adding any edge to *T* creates a cycle. B.
- T contains exactly V 1 edges. С.
- All of the above. D.

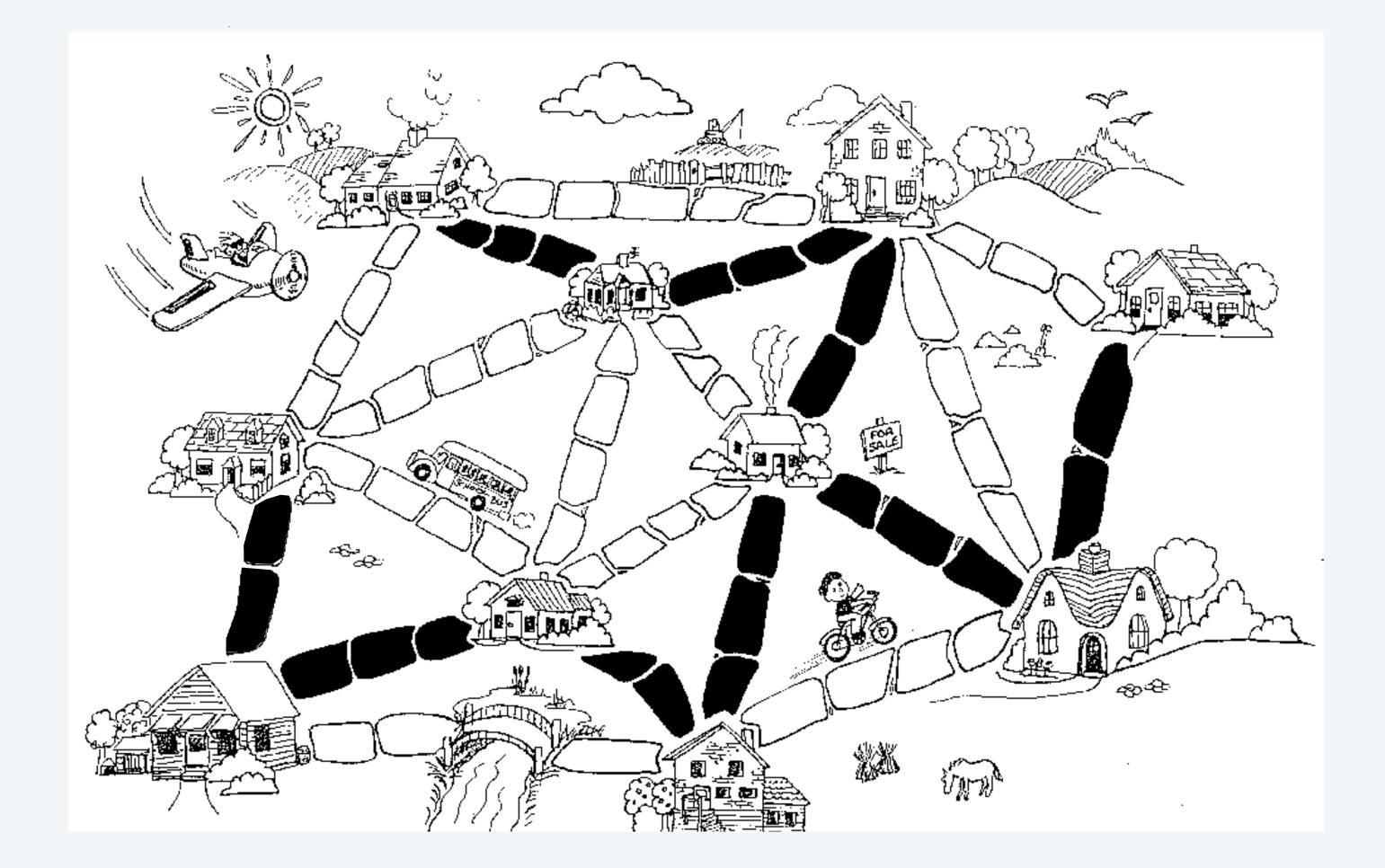


spanning tree T of graph G

Network design

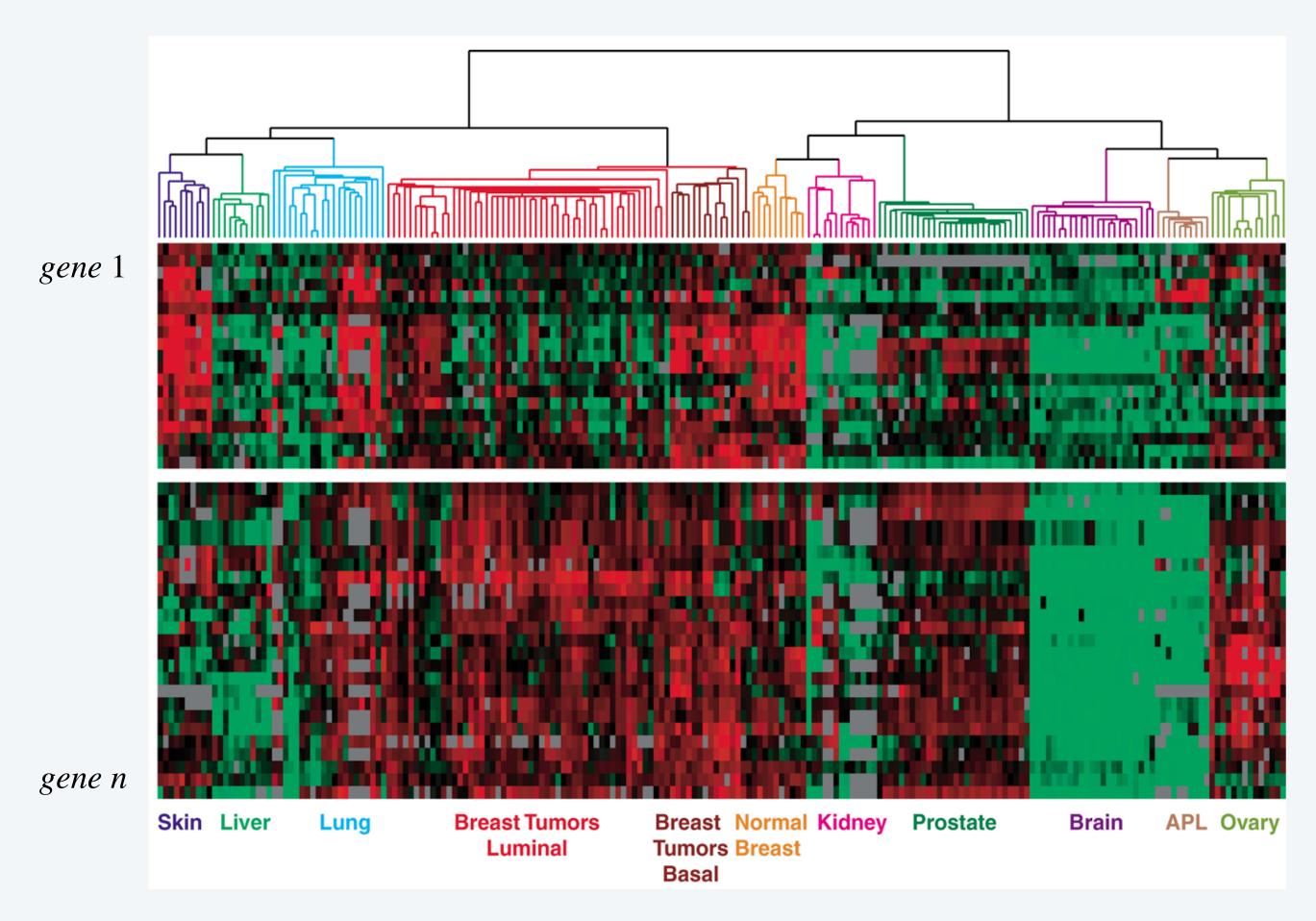
Network. Vertex = network component; edge = potential connection; edge weight = cost.

computer, transportation, electrical, telecommunication

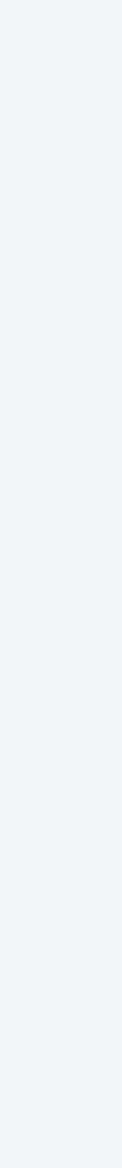


Hierarchical clustering

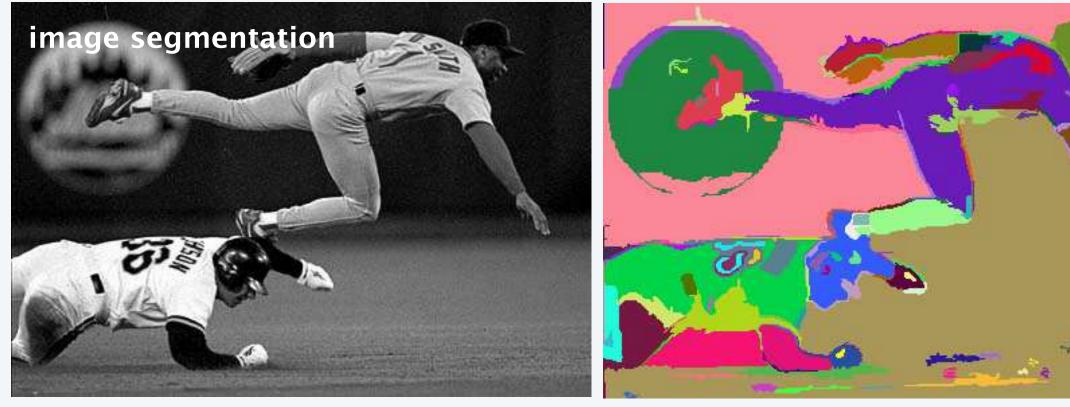
Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

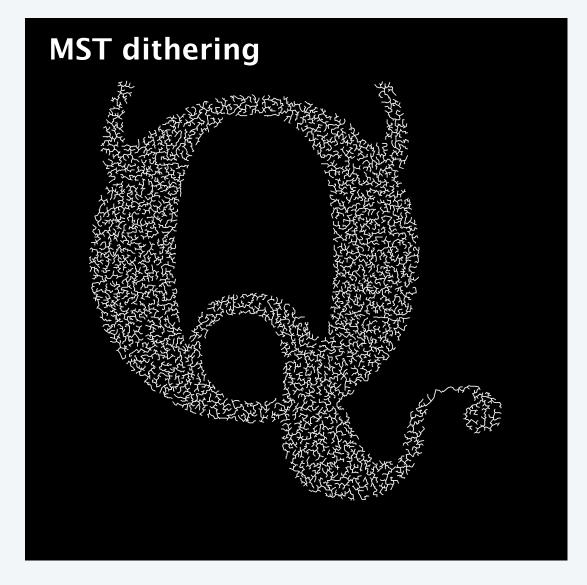


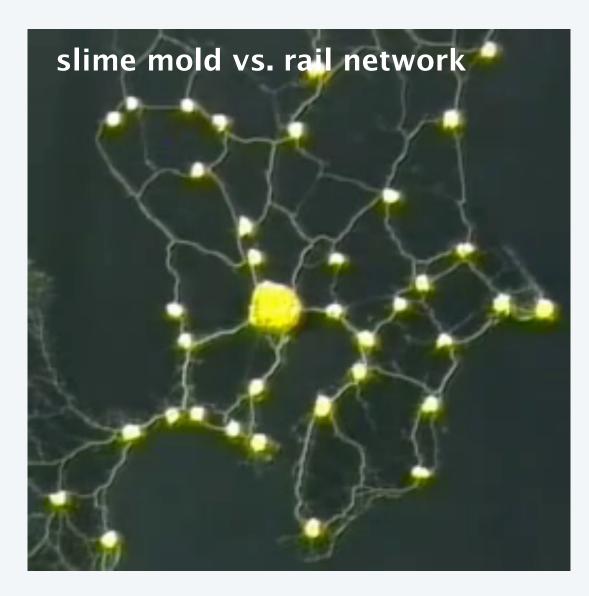
gene expressedgene not expressed



More MST applications









4.3 MINIMUM SPANNING TREES

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

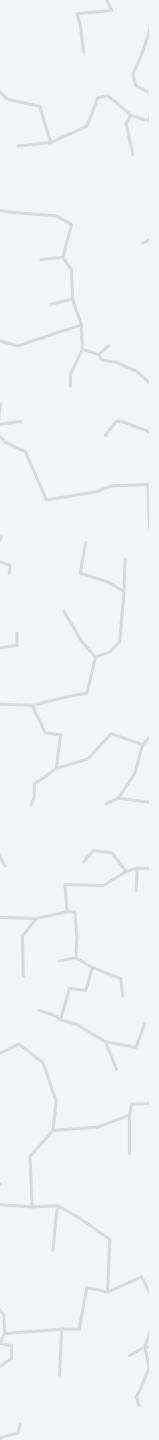
edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

introduction

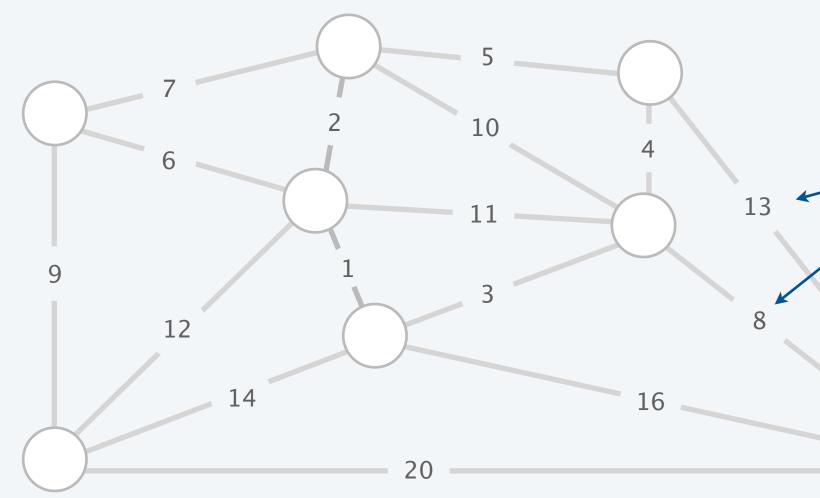
cut property



For simplicity, we assume:

- The graph is connected. \implies MST exists.
- The edge weights are distinct. \implies MST is unique.

Note. Today's algorithms all work even if edge weights are not distinct.



Je. *see Exercise* 4.3.3 *(solved on booksite)*

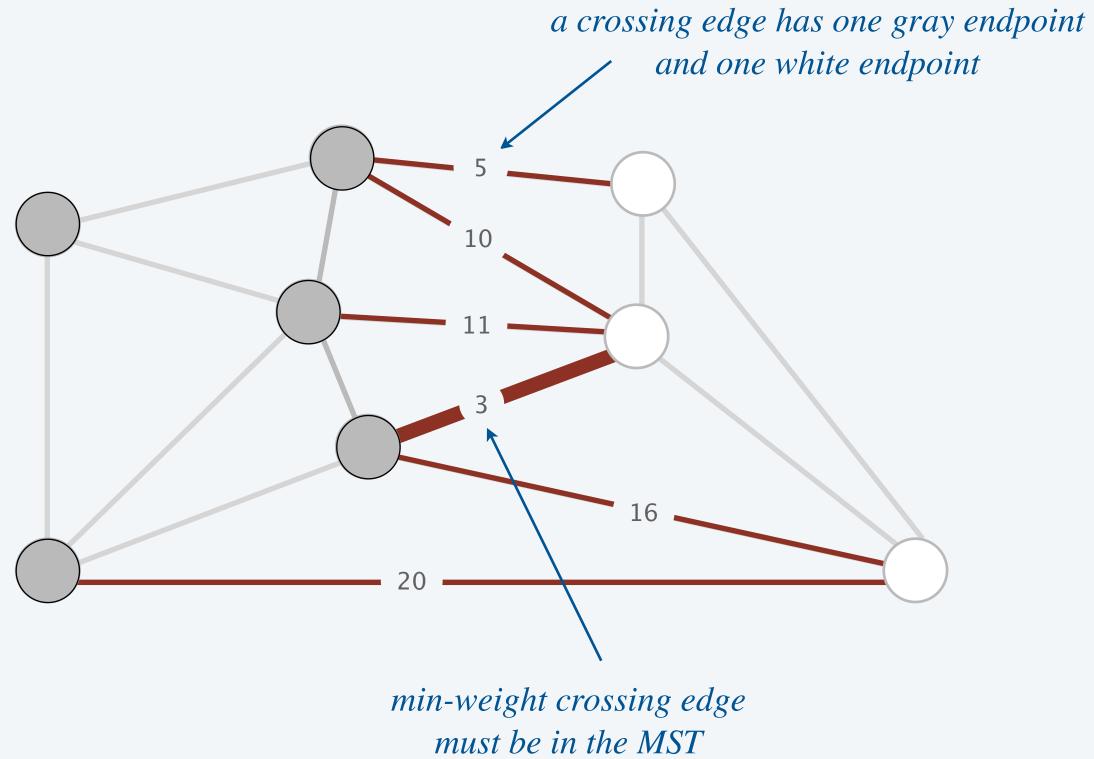
` assumption simplifies
the analysis and exposition

no two edge weights are equal

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets. Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge *e* is in the MST.

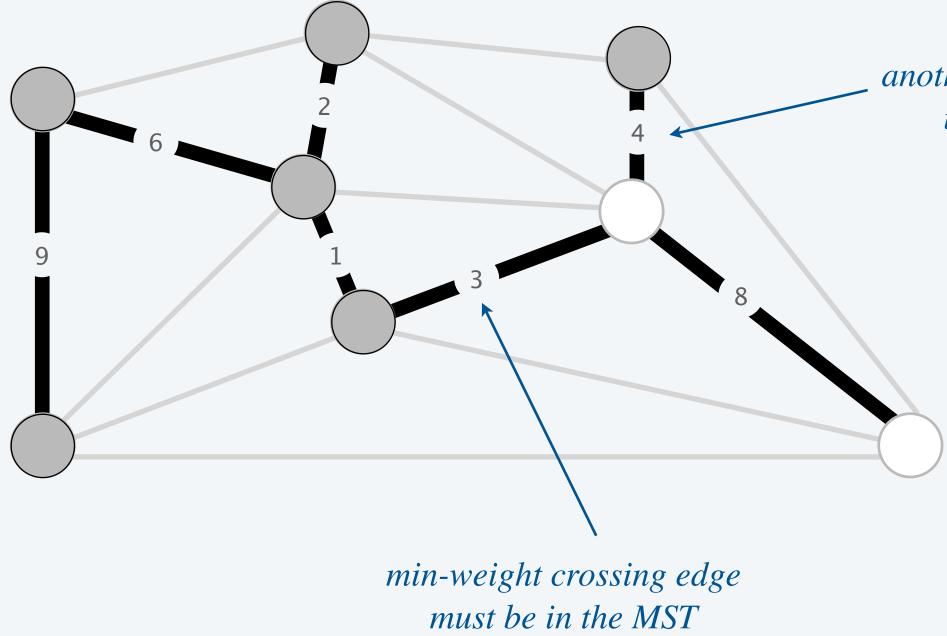


Cut property

Def. A **cut** in a graph is a partition of its vertices into two nonempty sets. **Def.** A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge *e* is in the MST.

Note. A cut may have multiple crossing edges in the MST.

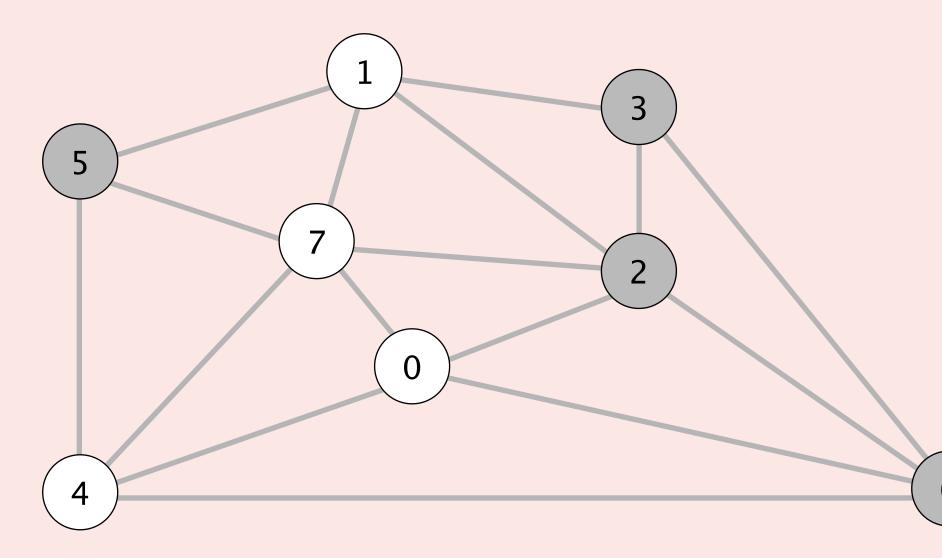


another crossing edge is in the MST

Minimum spanning trees: quiz 2

Which is the min-weight crossing edge for the cut { 2, 3, 5, 6 } ?

- **A.** 0-7 (0.16)
- **B.** 2-3 (0.17)
- **C.** 0-2 (0.26)
- **D.** 5-7 (0.28)



0.16
0.17
0.19
0.26
0.28
0.29
0.32
0.34
0.35
0.36
0.37
0.38
0.30
0.40
0.40

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two nonempty sets.Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge *e* is in the MST. Pf. [by contradiction]

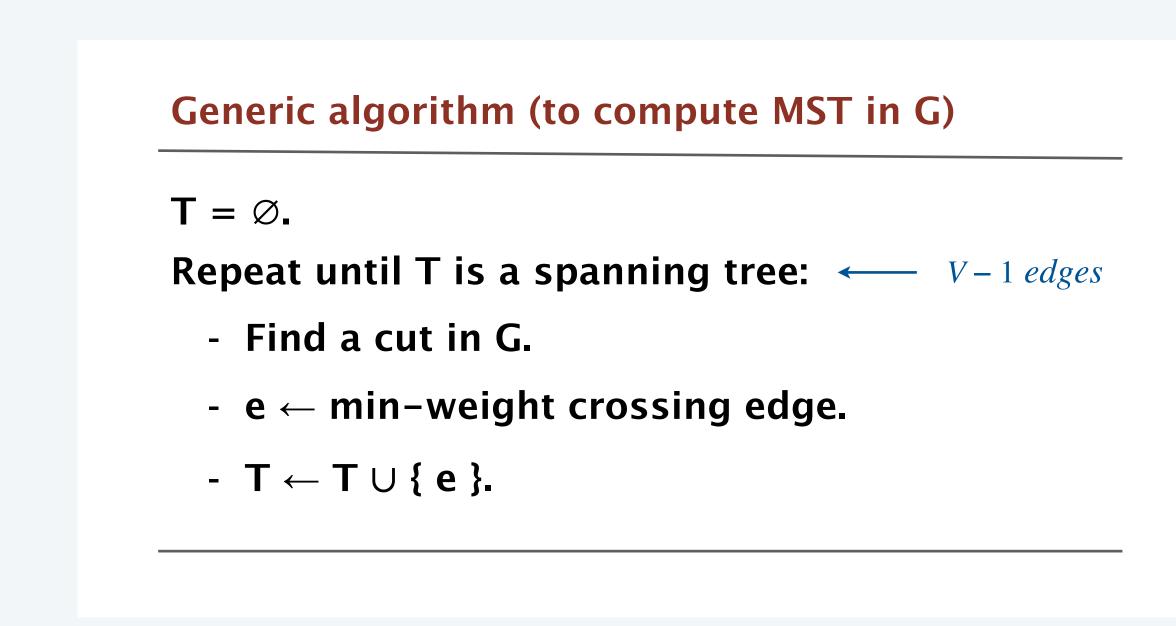
- Suppose *e* is not in the MST *T*.
- Adding *e* to *T* creates a unique cycle.
- Some other edge *f* in cycle must also be a crossing edge.
- Removing f and adding e to T yields a different spanning tree T'.
- Since weight(e) < weight(f), we have weight(T') < weight(T).
- Contradiction.

g edge. Danning tree T'.

the MST T does not contain e

adding e to MST T creates a unique cycle

Framework for minimum spanning tree algorithms



Efficient implementations.

- Which cut? \leftarrow 2^{V-2} distinct cuts
- How to compute min–weight crossing edge?
- Ex 1. Kruskal's algorithm.
- Ex 2. Prim's algorithm.
- Ex 3. Borüvka's algorithm.

4.3 MINIMUM SPANNING TREES

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

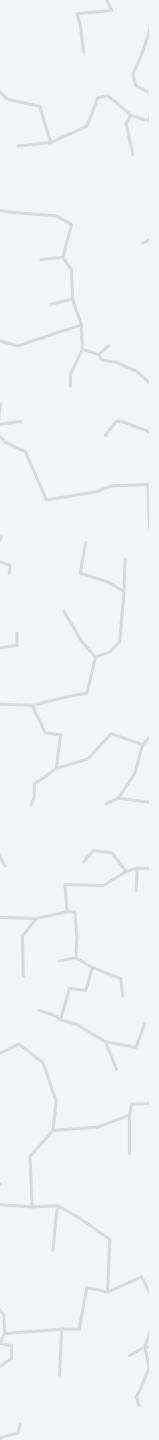
• edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

introduction

- cut property



API. Edge abstraction for weighted edges.

public class Edge implements Comparable <edge></edge>					
	Edge(int v, int w, double weight)				
int	either()				
int	other(int v)				
double	weight()				
int	compareTo(Edge that)				

edge e = v-w

create a weighted edge v-w

either endpoint

the endpoint that's not v

weight of edge

compare edges by weight

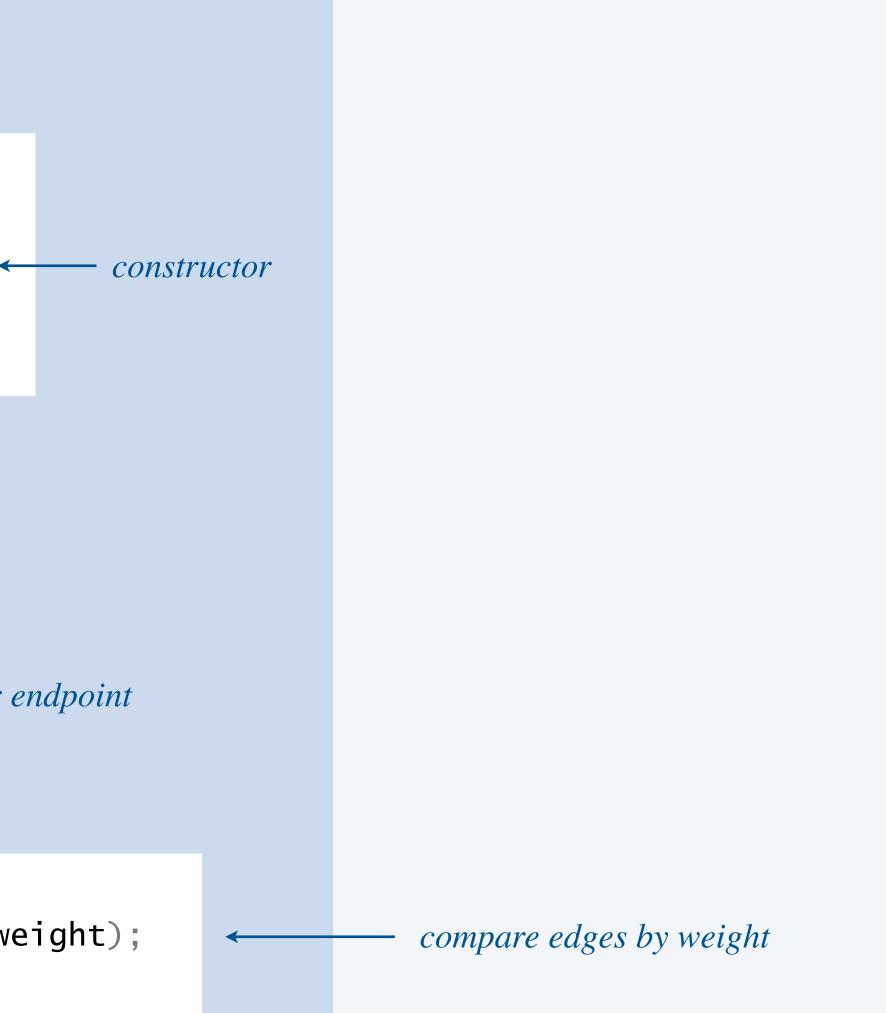
• •

int v = e.either(); int w = e.other(v); double weight = e.weight();

idiom for processing an edge e

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge> {
  private final int v, w;
  private final double weight;
   public Edge(int v, int w, double weight) {
     this v = v;
     this.w = w;
      this.weight = weight;
   public int either() {
                                either endpoint
     return v;
   }
   public int other(int vertex) {
      if (vertex == v) return w;
                                          other endpoint
      else return v;
   }
   public int compareTo(Edge that) {
     return Double.compare(this.weight, that.weight);
```



Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

public class EdgeWeightedGraph

•

	EdgeWeightedGraph(int V)	edge-we
void	addEdge(Edge e)	add wei
Iterable <edge></edge>	adj(int v)	edges ir
	•	•

veighted graph with V vertices (and no edges)

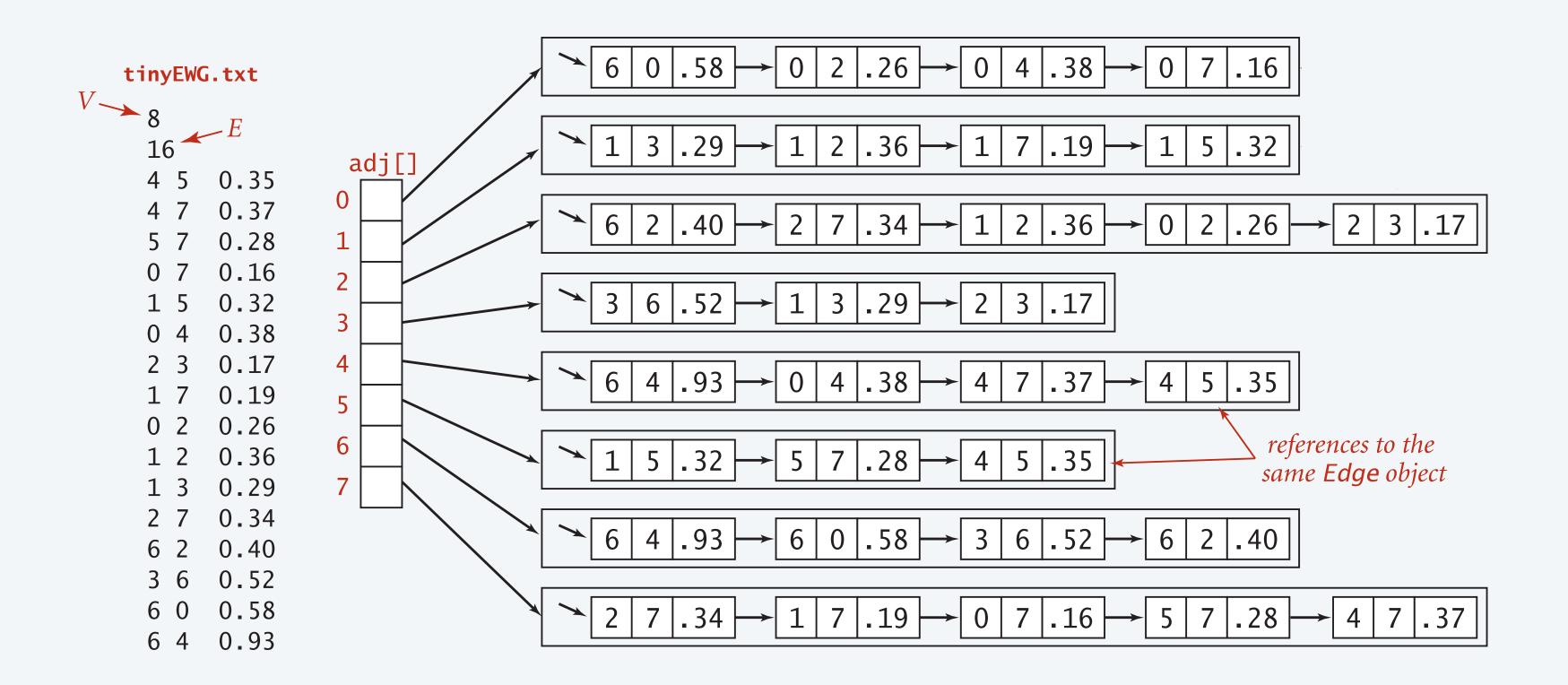
eighted edge e to this graph

incident to v

•

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.



Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph {
    private final int V;
    private final Queue<Edge>[] adj;
```

```
public EdgeWeightedGraph(int V) {
   this.V = V;
   adj = (Queue<Edge>[]) new Queue[V];
   for (int v = 0; v < V; v++)
    adj[v] = new Queue<>();
}
```

```
public void addEdge(Edge e) {
    int v = e.either(), w = e.other(v);
    adj[v].enqueue(e);
    adj[w].enqueue(e);
}
```

```
public Iterable<Edge> adj(int v) {
   return adj[v];
```

]

same as Graph (but adjacency lists of Edge objects)

add same Edge object to both adjacency lists

Minimum spanning tree API

- **Q.** How to represent the MST?
- A. Technically, an MST is an edge-weighted graph. But, for convenience, we represent it as a set of edges.

public class MST

MST(EdgeWeightedGraph G)

Iterable<Edge> edges()

double weight()

•

constructor

edges in MST

weight of MST

•

introduction

- cut property

Algorithms

Robert Sedgewick | Kevin Wayne

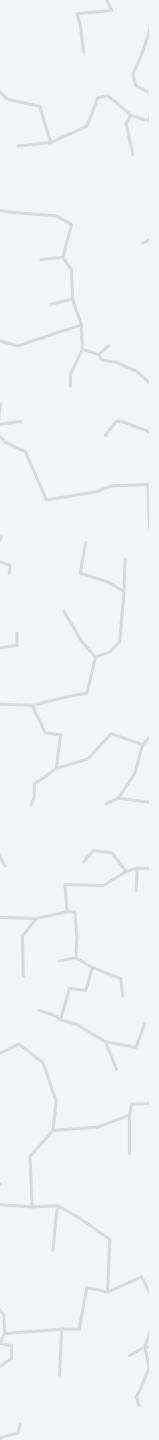
https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

edge-weighted graph API

Kruskal's algorithm

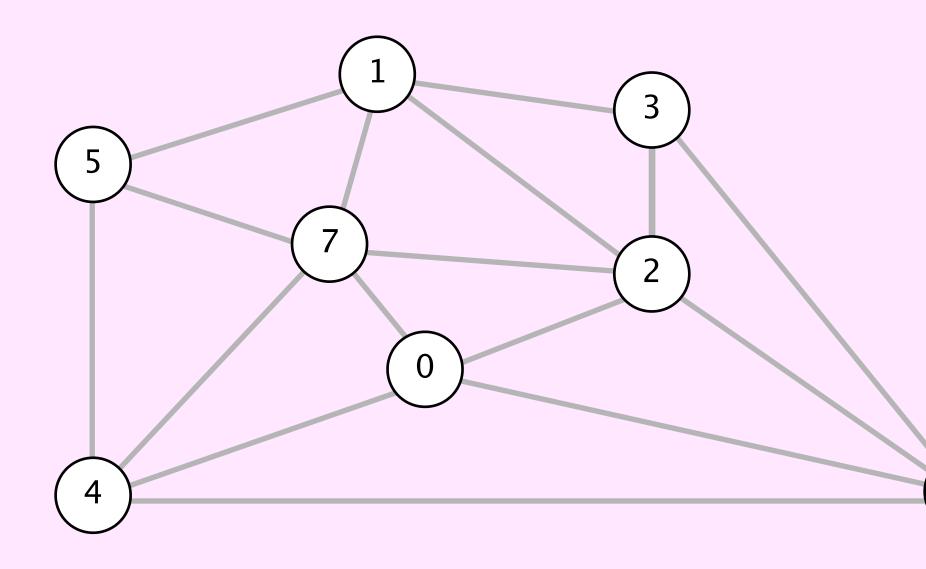
Prim's algorithm



Kruskal's algorithm demo

Consider edges in ascending order of weight.

• Add next edge to T unless doing so would create a cycle.



an edge-weighted graph

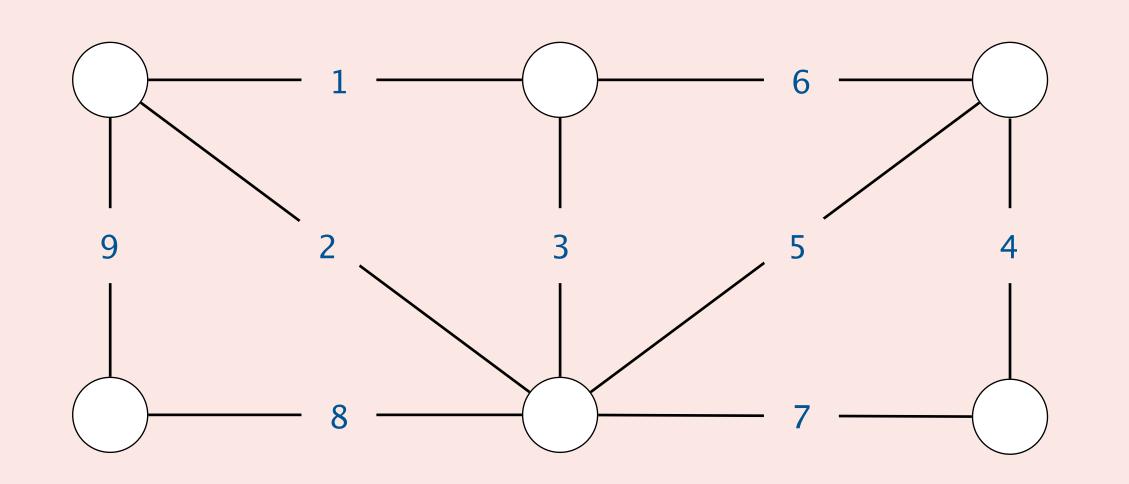
graph edges sorted by weight 0-7 0.16 2-3 0.17 1-7 0.19 0-2 0.26 5-7 0.28 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 6-4 0.93

6

Minimum spanning trees: quiz 3

In which order does Kruskal's algorithm select edges in MST?

D. 8, 2, 1, 5, 4



Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.

[Case 1 \implies] Kruskal's algorithm adds edge e = v - w to T.

- Vertices v and w are in different connected components of T.
- Cut = set of vertices connected to v in T.
- By construction of cut, *e* is a crossing edge; moreover,
 - no crossing edge is currently in T
 - no crossing edge was considered by Kruskal before *e*
- Thus, *e* is a min-weight crossing edge.
- Cut property $\implies e$ is in the MST. •

Kruskal considers edges in ascending order by weight

5 6

add edge to tree

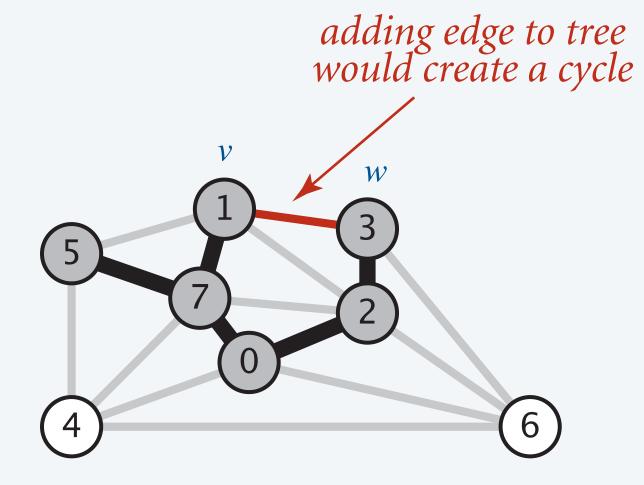
Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm adds edge e to T if and only if e is in the MST.

[Case 2 \leftarrow] Kruskal's algorithm discards edge e = v - w.

- From Case 1, all edges currently in T are in the MST.
- The MST can't contain a cycle, so it can't also contain *e*.

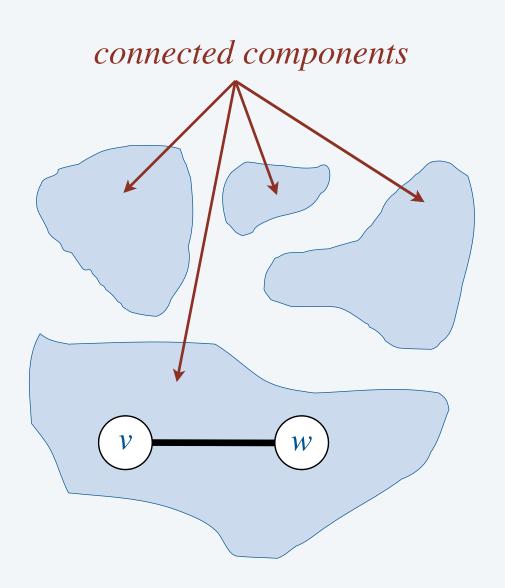


Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T, initially each vertex in its own set.
- If v and w are in same set, then adding v-w to T would create a cycle. [Case 2]
- Otherwise, add v-w to T and merge sets containing v and w.





Case 2: adding v-w creates a cycle

[Case 1]

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST {
   private Queue<Edge> mst = new Queue<>();
   public KruskalMST(EdgeWeightedGraph G) {
      Edge[] edges = G.edges();
      Arrays.sort(edges);
      UF uf = new UF(G.V());
      for (int i = 0; i < G.E(); i++) {</pre>
         Edge e = edges[i];
         int v = e.either(), w = e.other(v);
         if (uf.find(v) != uf.find(w)) {
             mst.enqueue(e);
            uf.union(v, w);
         }
   public Iterable<Edge> edges() {
      return mst;
```

edges in the MST

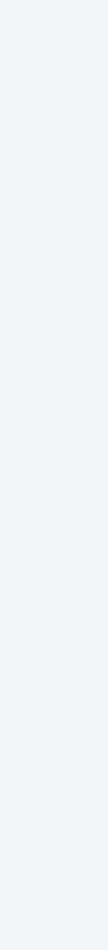
sort edges by weight maintain connected components

optimization: stop as soon as V-1 edges in T

greedily add edges to MST

edge v–w does not create cycle

- add edge e to MST
- merge connected components



Kruskal's algorithm: running time

Proposition. In the worst case, Kruskal's algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

• Bottlenecks are sorting and union-find operations.

operation	frequency	time per op
Sort	1	$\Theta(E \log E)$
UNION	V – 1	$\Theta(\log V)^{\dagger}$
Find	2 <i>E</i>	$\Theta(\log V)$ †

† using weighted quick union

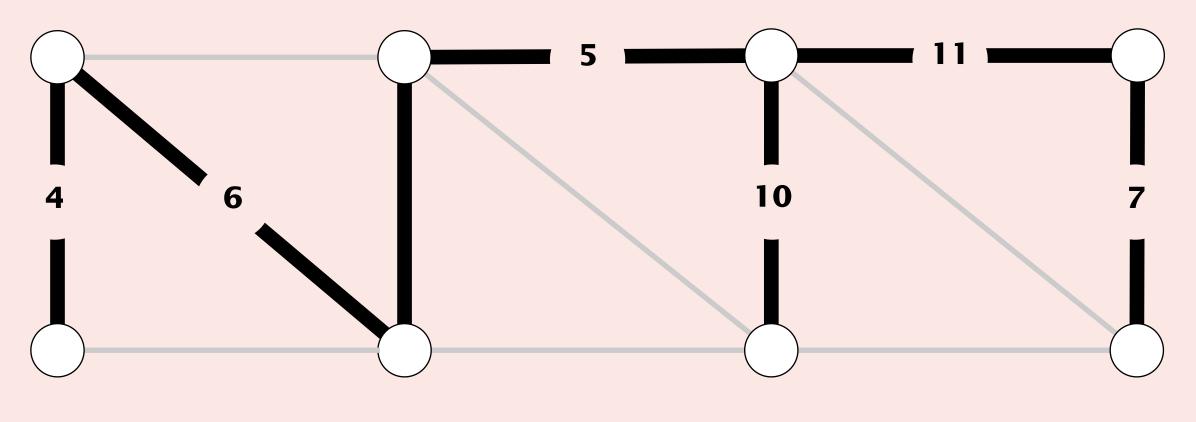
• Total. $\Theta(V \log V) + \Theta(E \log V) + \Theta(E \log E)$.

dominated by $\Theta(E \log E)$ since graph is connected

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

- Run Kruskal's algorithm using the original edge weights. Α.
- Run Kruskal's algorithm using the squares of the edge weights. Β.
- Run Kruskal's algorithm using the square roots of the edge weights. С.
- All of the above. D.

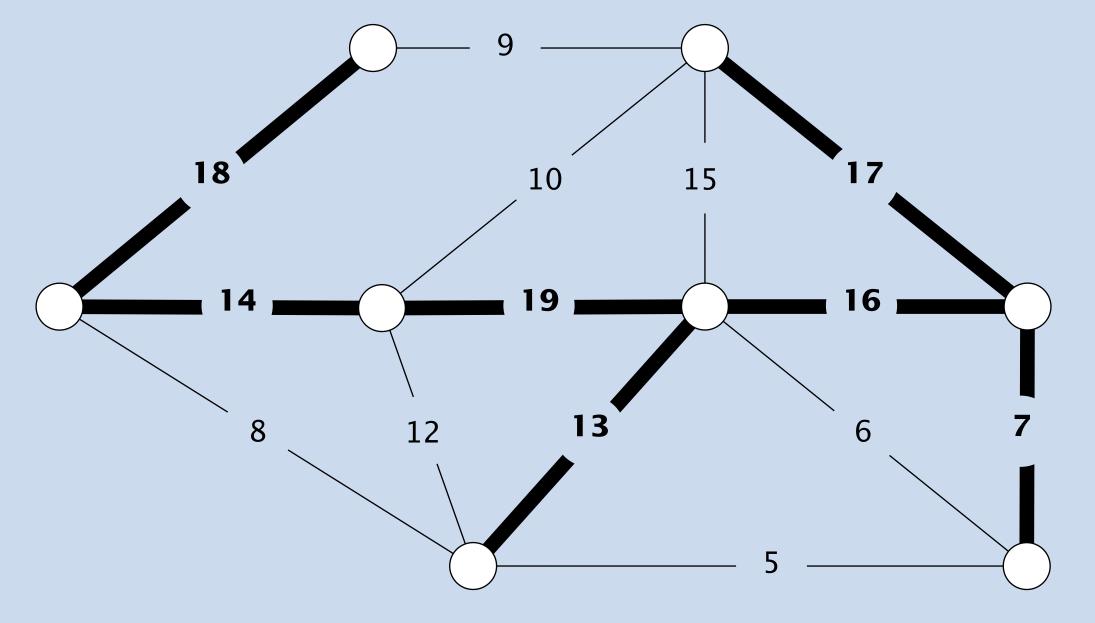


sum of squares = $4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347$

Maximum spanning tree

Problem. Given an undirected graph *G* with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.



maximum spanning tree T (weight = 104)

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

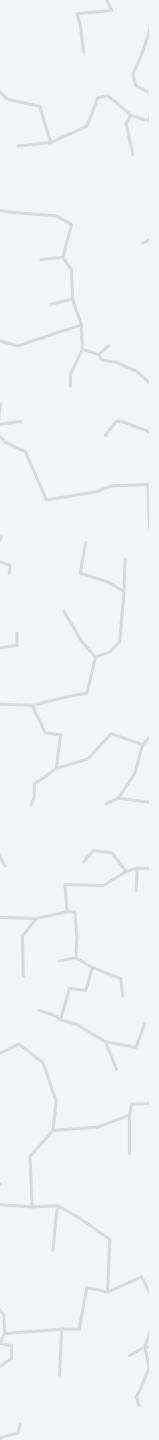
edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

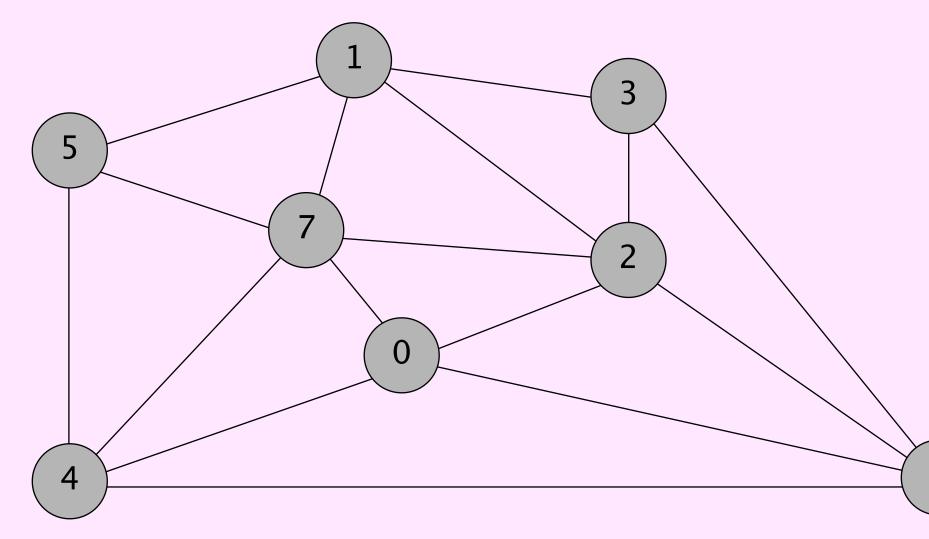
introduction

- cut property



Prim's algorithm demo

- Start with vertex 0 and grow tree *T*.
- Repeat until V 1 edges:
 - add to T the min-weight edge with exactly one endpoint in T



an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

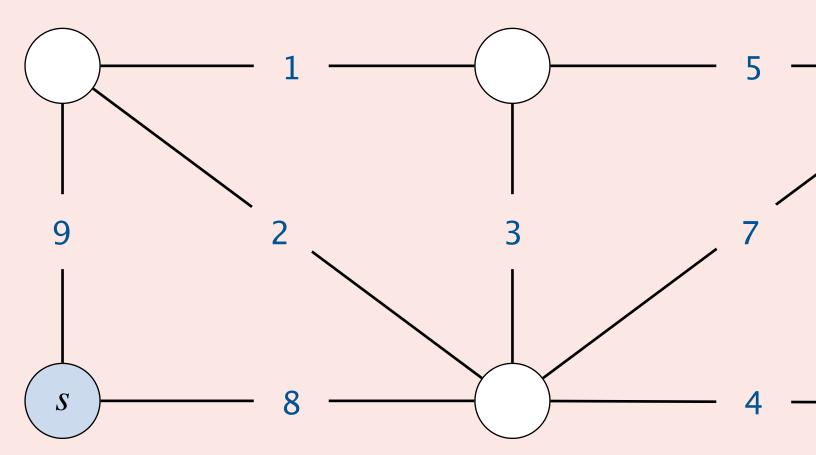
6

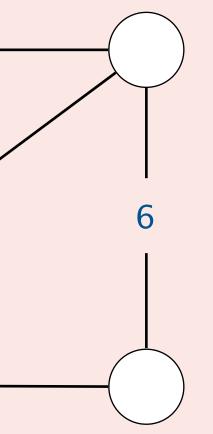
Minimum spanning trees: quiz 5

In which order does Prim's algorithm select edges in the MST? Assume it starts from vertex s.

- **A.** 8, 2, 1, 4, 5
- **B.** 8, 2, 1, 5, 4
- **C.** 8, 2, 1, 5, 6

D. 8, 2, 3, 4, 5





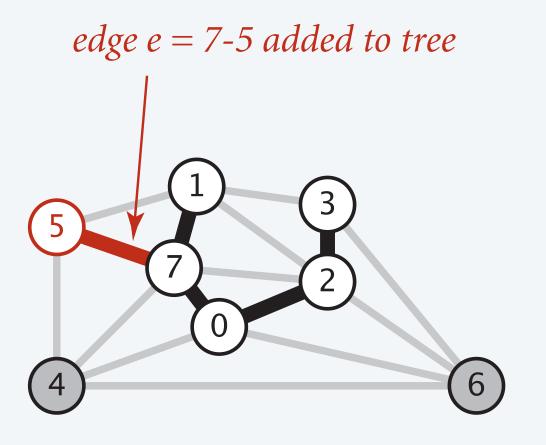
Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959] Prim's algorithm computes the MST.

Pf. Let $e = \min$ -weight edge with exactly one endpoint in *T*.

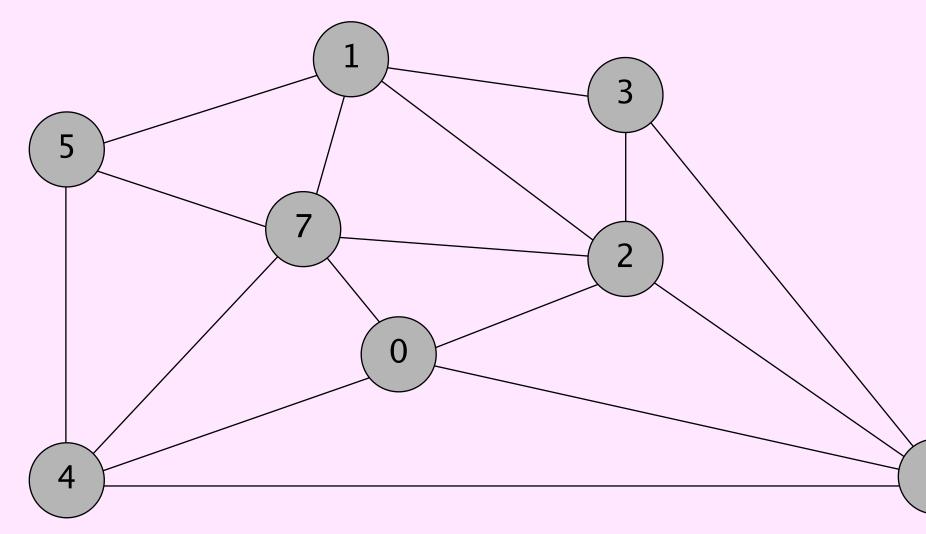
- Cut = set of vertices in *T*.
- Cut property \implies edge e is in the MST. •

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T?



Prim's algorithm: lazy implementation demo

- Start with vertex 0 and grow tree *T*.
- Repeat until V 1 edges:
 - add to T the min-weight edge with exactly one endpoint in T



an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

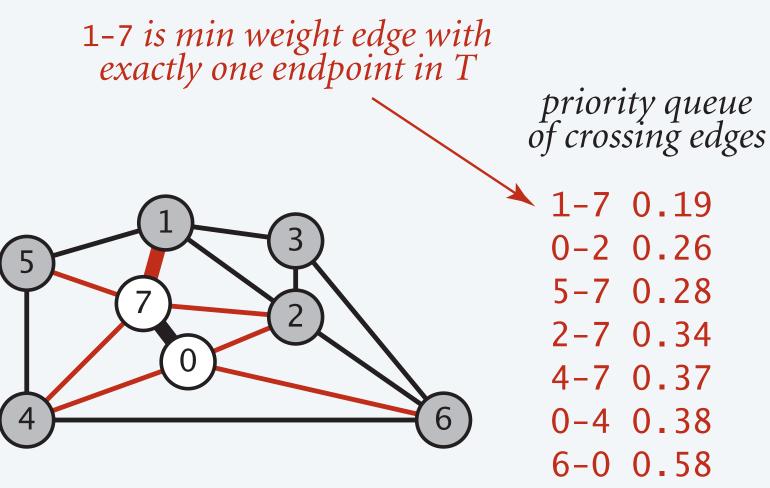
6

Prim's algorithm: lazy implementation

Challenge. How to efficiently find min–weight edge with exactly one endpoint in T?

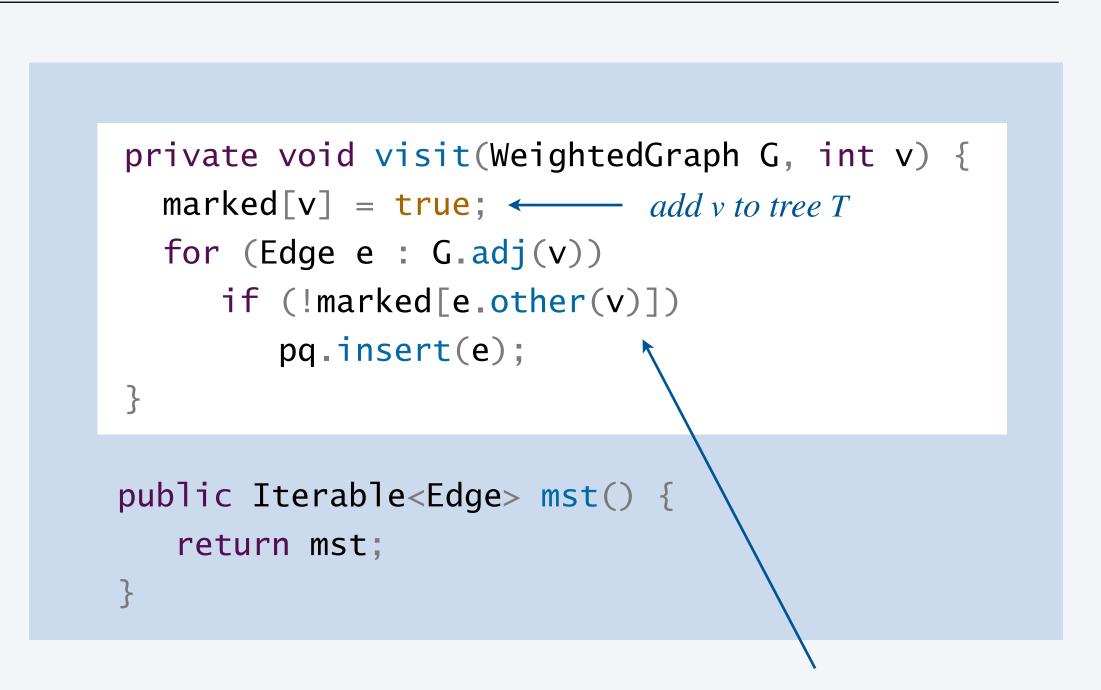
Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge e = v w to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let w be the unmarked vertex (not in T):
 - add *e* to *T* and mark *w*
 - add to PQ any edge incident to $w \leftarrow but$ don't bother if other



endpoint is already in T

```
public class LazyPrimMST {
  private boolean[] marked; // MST vertices
  private Queue<Edge> mst; // MST edges
  private MinPQ<Edge> pq; // PQ of edges
   public LazyPrimMST(WeightedGraph G) {
       pq = new MinPQ<>();
       mst = new Queue<>();
       marked = new boolean[G.V()];
       visit(G, 0); \leftarrow assume graph G is connected
       while (mst.size() < G.V() - 1) {
          Edge e = pq.delMin();
          int v = e.either(), w = e.other(v);
          mst.enqueue(e);
          if (!marked[v]) visit(G, v);
          if (!marked[w]) visit(G, w);
   . . .
```



repeatedly delete the min-weight $edge \ e = v - w \ from \ PQ$

for each edge e = v - w: add e to PQ if w not already in T

```
ignore if both endpoints in tree T
```

add edge e to tree T

add either v or w to tree T

Lazy Prim's algorithm: running time

Proposition. In the worst case, lazy Prim's algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

operation	frequency	time p
INSERT	E	Θ(log
Delete-Min	E	Θ(log

† using binary heap

per op

og E) †

og E) †

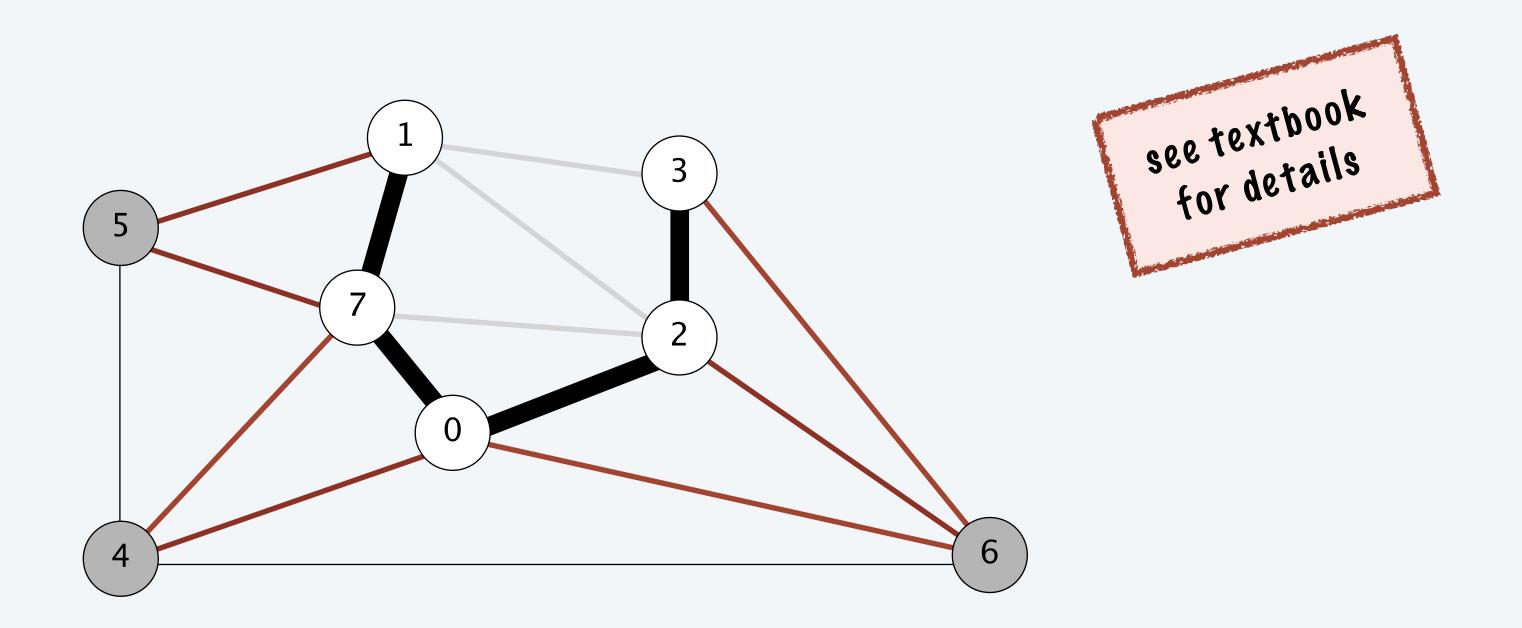
Prim's algorithm: eager implementation

Challenge. Find min–weight edge with exactly one endpoint in T.

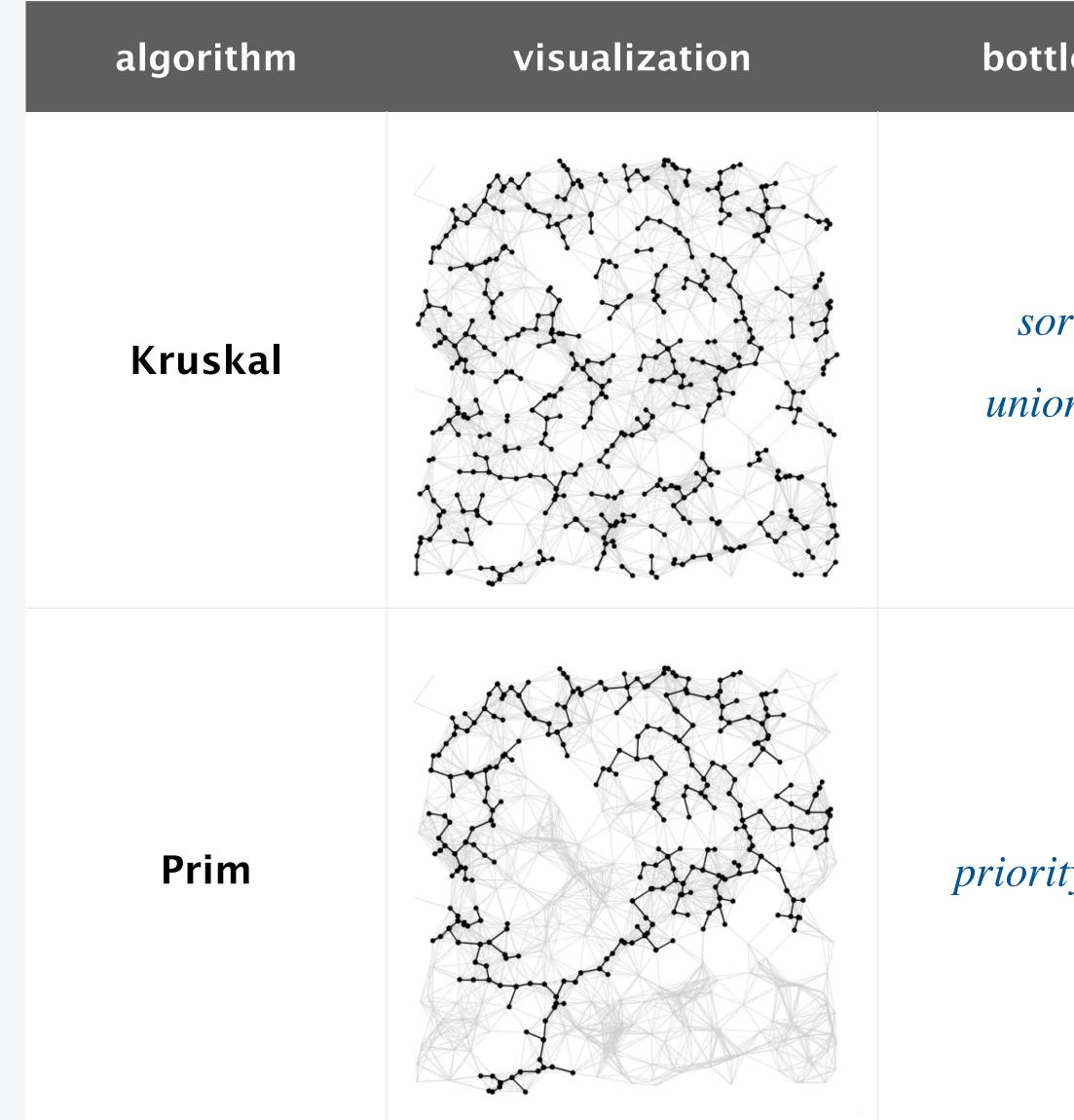
Observation. For each vertex v, need only min-weight edge connecting v to T.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

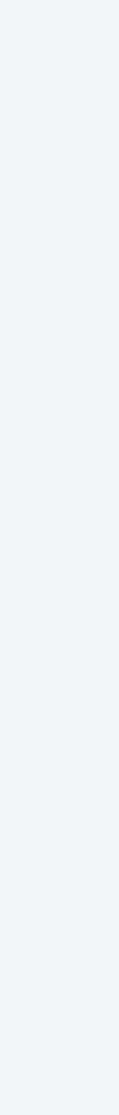
Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.



MST: algorithms of the day



leneck	running time
rting on–find	$\Theta(E \log E)$
ty queue	$\Theta(E \log V)$



Credits

media

Muddy City Problem

Microarrays and Clustering

Image Segmentation

<u>Felze</u>

Phylogeny Tree

MST Dithering

Slime Mold vs. Rail Network

Mona Singh

source	license
CS Unplugged	<u>CC BY-NC-SA 4.0</u>
Botstein and Brown	by author
enszwalb and Huttenlocher	
<u>Derzelle et al.</u>	
<u>Mario Klingemann</u>	<u>CC BY-NC 2.0</u>
Harvard Magazine	
Princeton University	

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

A final thought

" The algorithms we write are only as good as the questions we ask. And the best questions come from creative thinking and collaboration. " — Mona Singh

