
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 3/27/25 7:37  AM

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in directed graphs)
‣ breadth-first search (in undirected graphs)
‣ topological sort
‣ challenges

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph search overview

Tree traversal. Many ways to systematically explore nodes in a binary tree.

・Inorder: A C E H M R S X

・Preorder: S E A C R H M X

・Postorder: C A M H R E X S

・Level-order: S E X A R C H M

Graph traversal. Many ways to systematically explore vertices in a graph or digraph.

・DFS preorder: vertices in order of calls to dfs(G, v).

・DFS postorder: vertices in order of returns from dfs(G, v).

・BFS order: vertices in increasing order of distance from s.

2

A
C

E

H
M

R

S
X

stack/recursion

queue

queue

stack/recursion

0

3

21

s

1

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in directed graphs)
‣ breadth-first search (in undirected graphs)
‣ topological sort
‣ challenges

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest paths in a digraph

Problem. Find directed path from to each other vertex that uses the fewest edges. s

4

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

directed paths from 0 to 6

 0 → 2 → 7 → 4 → 5 → 1→ 3 → 6

 0 → 4 → 5 → 1 → 3 → 6

 0 → 2 → 7 → 3 → 6

 0 → 2 → 7 → 0 → 2 → 7 → 3 → 6

shortest path from 0 to 6 (length = 4)

 0 → 2 → 7 → 3 → 6

shortest path must be simple
(no repeated vertices)

Shortest paths in a digraph

Problem. Find directed path from to each other vertex that uses the fewest edges.

 
Key idea. Visit vertices in increasing order of distance from .  
 
 
 
 
 
 
 
 
 
 

Q. How to implement?

A. Store vertices to visit in a queue.

s

s

dist = 5dist = 4dist = 3dist = 2dist = 1dist = 0

5

s

Breadth-first search (in a digraph) demo

Repeat until queue is empty:

・Remove vertex from queue.

・Add to queue all unmarked vertices adjacent from and mark them.

v
v

6

graph G

0

4

2

1

5

3

0

4

2

1

5

3

6

8

5 0

2 4

3 2

1 2

0 1

4 3

3 5

0 2

tinyDG2.txt
V

E

visit vertex v

Breadth-first search (in a digraph) demo

Repeat until queue is empty:

・Remove vertex from queue.

・Add to queue all unmarked vertices adjacent from and mark them.

v
v

7

vertices reachable from 0
(and shortest directed paths)

0

4

2

1

5

3

0

1

2

3

4

5

–

0

0

4

2

3

T

T

T

T

T

T

0

1

1

3

2

4

v edgeTo[] marked[] distTo[]

visit vertex v

Breadth-first search

Repeat until queue is empty:

・Remove vertex from queue.

・Add to queue all unmarked vertices adjacent from and mark them.

v
v

8

Add vertex s to FIFO queue and mark s.

Repeat until the queue is empty:

 - remove the least recently added vertex v

 - for each unmarked vertex w adjacent from v:  
 add w to queue and mark w

BFS (from source vertex s)

visit vertex v

Breadth-first search: Java implementation

9

public class BreadthFirstDirectedPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int[] distTo;
 ...

}

 while (!queue.isEmpty()) {

 int v = queue.dequeue();

 for (int w : G.adj(v)) {

 if (!marked[w]) {

 queue.enqueue(w);

 marked[w] = true;

 edgeTo[w] = v;

 distTo[w] = distTo[v] + 1;

 }

 }

 }

}

private void bfs(Digraph G, int s) {
 Queue<Integer> queue = new Queue<>();
 queue.enqueue(s);
 marked[s] = true;
 distTo[s] = 0;

https://algs4.cs.princeton.edu/42digraph/BreadthFirstDirectedPaths.java.html

initialize queue of vertices to explore

found new vertex w via edge v→w

also safe to stop as soon as all vertices marked

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html

Breadth-first search properties

Proposition. In the worst case, BFS takes time.

Pf. Each vertex reachable from is visited once.  

Proposition. BFS computes shortest paths from .

Pf idea. BFS examines vertices in increasing order of distance (number of edges) from s.

Θ(E + V)
s

s

10

4 3

dist = 2dist = 1

2

1

50

dist = 0 dist = 3 dist = 4

invariant: queue contains some vertices of distance k from s,
followed by ≥ 0 vertices of distance k+1 (and no other vertices)

0

4

2

1

5
3

digraph G

s

Graphs and digraphs II: poll 1

What could happen if we mark a vertex when it is dequeued (instead of enqueued)?

A. Doesn’t find a shortest path.

B. Takes exponential time.

C. Both A and B.

D. Neither A nor B.

11

while (!queue.isEmpty()) {

 int v = queue.dequeue();

 marked[v] = true;

 for (int w : G.adj(v)) {

 if (!marked[w]) {

 marked[w] = true;

 queue.enqueue(w);

 edgeTo[w] = v;

 distTo[w] = distTo[v] + 1;

 }

 }

}

0 1221

0

1

2

v edgeTo[] marked[] distTo[]

0T

1

1

T0

0

21

T

0

queue

1

2

2

Single-target shortest paths

Given a digraph and a target vertex , find shortest path from every vertex to .  
 
 
Ex. t = 0

・Shortest path from 7 is 7→6→0.

・Shortest path from 5 is 5→4→2→0.

・Shortest path from 12 is 12→9→11→4→2→0.

・…

 
 
 
 
 
 
Q. How to implement single-target shortest paths algorithm?

t t

12

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

Multiple-source shortest paths

Given a digraph and a set of source vertices, find shortest path from any vertex in the set 
to every other vertex.

 
Ex. S = { 1, 7, 10 }.

・Shortest path to 4 is 7→6→4.

・Shortest path to 5 is 7→6→0→5.

・Shortest path to 12 is 10→12.

・…

 
 
 
 
 
 
Q. How to implement multi-source shortest paths algorithm?

13

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

needed for WordNet assignment

Graphs and digraphs II: poll 2

Suppose that you want to design a web crawler. Which core algorithm should you use?

A. Depth-first search.

B. Breadth-first search.

C. Either A or B.

D. Neither A nor B.

15

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph?

Web crawler output

16

https://www.princeton.edu

https://www.w3.org

https://ogp.me

https://giving.princeton.edu

https://www.princetonartmuseum.org

https://www.goprincetontigers.com

https://library.princeton.edu

https://helpdesk.princeton.edu

https://tigernet.princeton.edu

https://alumni.princeton.edu

https://gradschool.princeton.edu

https://vimeo.com

https://princetonusg.com

https://artmuseum.princeton.edu

https://jobs.princeton.edu

https://odoc.princeton.edu

https://blogs.princeton.edu

https://www.facebook.com

https://twitter.com

https://www.youtube.com

https://deimos.apple.com

https://qeprize.org

https://en.wikipedia.org

...

BFS crawl

https://www.princeton.edu

https://deimos.apple.com

https://www.youtube.com

https://www.google.com

https://news.google.com

https://csi.gstatic.com

https://googlenewsblog.blogspot.com

https://labs.google.com

https://groups.google.com

https://img1.blogblog.com

https://feeds.feedburner.com

https://buttons.googlesyndication.com

https://fusion.google.com

https://insidesearch.blogspot.com

https://agoogleaday.com

https://static.googleusercontent.com

https://searchresearch1.blogspot.com

https://feedburner.google.com

https://www.dot.ca.gov

https://www.TahoeRoads.com

https://www.LakeTahoeTransit.com

https://www.laketahoe.com

https://ethel.tahoeguide.com

...

DFS crawl

Application: web crawler

Goal. Crawl web, starting from some root web page, say https://www.princeton.edu.

 
 
Solution. [BFS with implicit digraph]

・Choose root web page as source .

・Maintain a queue of websites to explore.

・Maintain a set of marked websites.

・Dequeue the next website and enqueue  
any unmarked websites to which it links.  
 

Caveat. Industrial-strength web crawlers use same  
core idea, but more sophisticated techniques.

s

17

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph?

Bare-bones web crawler: Java implementation

18

 while (!queue.isEmpty()) {

 while (matcher.find()) {

 String w = matcher.group();

 }

 }

 Queue<String> queue = new Queue<>();

 SET<String> marked = new SET<>();

 String root = "https://www.princeton.edu";

 queue.enqueue(root);

 marked.add(root);

String regexp = "https://(\\w+\\.)+(\\w+)";

Pattern pattern = Pattern.compile(regexp);

Matcher matcher = pattern.matcher(input);

String v = queue.dequeue();

StdOut.println(v);

In in = new In(v);

String input = in.readAll();

if (!marked.contains(w)) {

 marked.add(w);

 queue.enqueue(w);

}

queue of websites to crawl

set of marked websites

start crawling from root website

read in raw HTML from next
website in queue

use regular expression to find all URLs
in website of form https://xxx.yyy.zzz
[crude pattern misses relative URLs]

if unmarked,
mark and enqueue

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in directed graphs)
‣ breadth-first search (in undirected graphs)
‣ topological sort
‣ challenges

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Application: routing in a communication network

Fewest number of hops in a communication network.

20

ARPANET 1970s

Breadth-first search in undirected graphs

Problem. Find path between and each other vertex that uses fewest edges.

Solution. Use BFS.  
 
 
 
 
 
 
 
 
 

 
Proposition. BFS finds shortest paths between and every other vertex in time.

s

s Θ(E + V)

21

Add vertex s to FIFO queue and mark s.

Repeat until the queue is empty:

 - remove the least recently added vertex v

 - for each unmarked vertex w adjacent to v:  
 add w to queue and mark w

BFS (from source vertex s)

but now, for each undirected edge v–w:
v is adjacent to w, and w is adjacent to v

Application: Kevin Bacon numbers

22
SixDegrees of Hollywood

Endless Games board game

https://oracleofbacon.org

http://oracleofbacon.org

Kevin Bacon graph

・Include one vertex for each performer and one for each movie.

・Connect a movie to all performers that appear in that movie.

・Compute shortest paths between = Kevin Bacon and every other performer.s

23A tiny portion of the movie–performer graph

Kevin
Bacon

Ray
McKinnon

Benedict
Cumberbatch

Nicole
Kidman

John
Gielguld

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligula

Black
Mass

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

Footloose

Imitation
Game

Whiplash

Miles
Teller

Keira
Knightley

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in directed graphs)
‣ breadth-first search (in undirected graphs)
‣ topological sort
‣ challenges

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Directed acyclic graphs

Directed acyclic graph (DAG). A digraph with no directed cycles.

 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. DAGs are an important subclass of digraphs that arise in many applications.

25

3

0

5

1

4

2

3

0

5

1

4

2

DAG
(no directed cycles)

digraph
(but not a DAG)

3

1

4

Family tree DAG

Vertex = person; edge = biological child.

26
pedigree of King Charles II of Spain

no directed cycles
(a person can’t be their own ancestor)

WordNet DAG

Vertex = synset; edge = hypernym relationship.

27

https://wordnet.princeton.edu

happening
occurrence
occurrent

natural_event

change
alteration

modification
miracle

transition
damage

harm
impairment

increase

jump
leap

act
human_action
human_activity

forfeit
forfeiture
sacrifice

event

leap
hump

saltation

action

change

group_action

resistance
opposition transgression

variationdemotion
motion

movement
move

locomotion
travel

run
running

dash
sprint

descent

jump
parachuting

no directed cycles
(a synset can’t be more general than itself)

a subgraph of the WordNet DAG

https://wordnet.princeton.edu

Bayesian networks

Vertex = variable; edge = conditional dependency.

28

Citation: Thornley S, Marshall RJ, Wells S, Jackson R (2013) Using Directed Acyclic Graphs for Investigating Causal Paths for Cardiovascular
Disease. J Biomet Biostat 4: 182. doi:10.4172/2155-6180.1000182

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 4 of 6

Volume 4 • Issue 5 • 1000182

From the logistic regression analyses, the greatest odds ratios were
between ethnic group and diabetes status. Paci!c people were4.4 times
more likely than ‘Others’ to be diagnosed with diabetes (estimated OR:
6.44, 95% CI: 5.39, 7.70; prevalence of diabetes among Others: 8.6%)
and Indian people were almost four times more likely than ‘Others’
to have the diagnosis in this cohort (estimated OR: 5.14, 95% CI: 3.78
to 7.00). For continuous outcome measures, those who used anti-
hypertensive drugs had an average systolic blood pressure 7.30 mmHg
(95% CI: 6.28 to 8.33) higher than people who did not use these drugs.

Discussion
In this exploratory analysis with a relatively small dataset, we

have shown that a DAG learning algorithm generated a plausible
graph explaining the occurrence of cardiovascular disease. "e DAG
captures the two known key causal in#uences of CVD: age and cigarette
smoking. It also demonstrates the well-known in#uence of age on other
variables, such as systolic blood pressure [14] and preventive drug
use [15]. Positive or higher values of these variables increased with
advancing age.

"e DAG may help inform variable selection decisions for regression
modelling to establish magnitude of e$ects. For example, from our
data, ethnicity in#uences diabetes, cigarette smoking, and family
history of premature CVD. "ese ‘causal’ relationships indicate that in
trying to assess the e$ects of ethnic group on CVD, adjusting for any
of these mediating variables will bias the association. It is equivalent to
adjusting for blood pressure level when investigating if there is a causal
relationship between body mass and CVD, as blood pressure is on the
causal pathway. Similarly, the DAG simpli!es assessing the in#uence of
potential confounding factors on CVD incidence. It also suggests that
none of the other baseline variables confounds the relationship between
ethnicity and CVD, since no other variable directly in#uences ethnic
group. "us, when assessing the causal e$ect of ethnicity, it may only be
necessary to adjust for age, since, as we argued before, it is a modi!er of
the e$ect of ethnic group on CVD.

An interesting feature of the DAG was the link between age and

reported family history, showing a negative relationship. "is may
re#ect the belief and reporting practice of the physician, who may only
enquire about family history of CVD in younger patients, assuming that
older patients will not have a family history. An alternative assumption
is that genetic causes of CVD only manifest disease in younger patients,
so that older patients, when risk assessed, are assumed not to have a
genetic predisposition.

Again, if this DAG were a valid representation of causality it would
suggest that very few of the variables that were measured actually cause
CVD, so in assessing the e$ect of various exposures, some adjustment
may cause more harm than good. It also counters the common practice
in clinical research of reporting ‘independent risk factors’ a%er adjusting
for a number of other variables by regression [16] and considering
them as causal.

"e DAG presented here also may help identify what Pearl terms
‘barren proxies’ when assessing causal in#uences. "ese are variables
which have no direct in#uence on either the exposure or outcome
variables, but are themselves causally in#uenced by factors that are
either related to exposure or disease, or possibly both. In this sense,
they could be considered as proxy measures of either exposure
or disease. For example, consider a scenario in which one was to
investigate the statistical evidence for a causal link between sex and
CVD incidence. In this case, including the cholesterol ratio variable as a
covariate, which, in this data set is in#uenced by sex, but does not show
convincing evidence of in#uencing disease status, may increase (rather
than reduce) bias in estimating the strength of association between sex
and CVD in a regression model. "us, in this dataset the cholesterol
ratio would be termed a barren proxy. As with the ethnicity example
above, the value of excluding the cholesterol ratio in a causal analysis is
distinct from the value which the cholesterol ratio variable may play in
predicting disease incidence.

Some known links emerged from the analysis, for example that
between cigarette smoking and serum lipids has been long described
[17]. "e DAG did not, however, directly link serum lipids with CVD.
In addition, the DAG and the e$ect estimates in Table 1 identi!ed that

CVD: Cardiovascular disease. HDL: high-density lipoprotein cholesterol concentration. TC: total cholesterol concentration.
Figure 1: DAG, derived from the grow-shrink algorithm. Grayed boxes indicate outcome variables.Using DAGs for Investigating Causal Paths for Cardiovascular Disease

no directed cycles
(a variable can’t depend upon itself)

https://api.semanticscholar.org/CorpusID:44213386

Combinational circuits

Digital logical circuit. Vertex = logic gate; edge = wire.

29

A

YB
C

no directed cycles combinational circuit⟹

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,  
in which order should we schedule the tasks?

 
Digraph model. vertex = task; edge = precedence constraint.

 
 
 
 
 
 
 
 
 
 
 
Applications. Project management, compilers, parallel computing, ...

30

tasks precedence constraint graph

0

1

4

52

6

3

feasible schedule

0. Math for CS

1. Complexity Theory

2. Machine Learning

3. Intro to CS

4. Cryptography

5. Scientific Computing

6. Algorithms

no directed cycles

Topological sort

Topological sort. Given a DAG, find a linear ordering of the vertices so that

for every edge → , comes before in the ordering.v w v w

31

directed edges

 0→5 0→2
 0→1 3→6
 3→5 3→4
 5→2 6→4
 6→0 3→2
 1→4

DAG

0

1

4

52

6

3

topological ordering: 3 6 0 5 2 1 4

edges in DAG define a “partial order” for vertices

no directed cycles

Graphs and digraphs II: poll 3

Suppose that you want to topologically sort the vertices in a DAG.  
Which graph-search algorithm should you use?

A. Depth-first search.

B. Breadth-first search.

C. Either A or B.

D. Neither A nor B.

32

DAG

0

1

4

52

6

3

topological ordering: 3 5 0 5 2 1 4

Topological sort demo

・Run depth-first search.

・Return vertices in reverse DFS postorder.

0

1

4

52

6

3

33

a directed acyclic graph

1

4

52

6

3

0
7

11

 0 5

 0 2

 0 1

 3 6

 3 5

 3 4

 5 2

 6 4

 6 0

 3 2

tinyDAG7.txtorder in which dfs() calls finish

Topological sort demo

・Run depth-first search.

・Return vertices in reverse DFS postorder.

34

4 1 2 5 0 6 3

DFS postorder

done

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological ordering 
(reverse DFS postorder)

order in which dfs() calls finish

Depth-first search: reverse postorder

35

public class DepthFirstOrder {
 private boolean[] marked;
 private Stack<Integer> reversePostorder;

 public DepthFirstOrder(Digraph G) {

 reversePostorder = new Stack<>();
 marked = new boolean[G.V()];

 for (int v = 0; v < G.V(); v++)
 if (!marked[v])
 dfs(G, v);
 }

 private void dfs(Digraph G, int v) {

 marked[v] = true;

 for (int w : G.adj(v))

 if (!marked[w]) dfs(G, w);

 reversePostorder.push(v);
 }

 public Iterable<Integer> reversePostorder() {
 return reversePostorder;
 }

}

return vertices in
reverse DFS postorder

run DFS from all vertices

Topological sort in a DAG: intuition

Why is the reverse DFS postorder of a DAG a topological order?

・First vertex in DFS postorder has outdegree .

・Second vertex in DFS postorder can point only to first vertex.

・…

0

36

4 1 2 5 0 6 3

DFS postorder

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological ordering 
(reverse DFS postorder)

Topological sort in a DAG: proof of correctness

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge → . When dfs(v) is called:  

・Case 1: dfs(w) has already been called and returned.

– thus, appears before in DFS postorder  

・Case 2: dfs(w) has not yet been called.

– dfs(w) will get called directly or indirectly by dfs(v)

– so, dfs(w) will return before dfs(v) returns

– thus, appears before in DFS postorder  

・Case 3: dfs(w) has already been called,  
but has not yet returned.

– function-call stack contains directed path from to

– appending edge → to this path yields a directed cycle

– contradiction (it’s a DAG)

v w

w v

w v

w v
v w

dfs(0)

 dfs(1)

 dfs(4)

 4 done

 1 done

 dfs(2)

 2 done

 dfs(5)

 check 2

 5 done

0 done

check 1

check 2

dfs(3)

 check 2

 check 4

 check 5

 dfs(6)

 check 0

 check 4

 6 done

3 done

check 4

check 5

check 6

done

37

case 2
(w = 6)

case 1
(w = 2, 4, 5)

v = 3

Topological sort in a DAG: running time

Proposition. For any DAG, the DFS-based algorithm computes a topological order in time.

Pf. For every vertex , there is exactly one call to dfs(v).

 
 
 
 
 
Q. What if we run the algorithm on a digraph that is not a DAG?

A. Reverse DFS postorder is still well defined, but it won’t be a topological order.

Θ(E + V)
v

38

critical that vertices are marked
(and never unmarked)

Directed cycle detection

Proposition. A digraph has a topological order if and only if contains no directed cycle.

Pf.

・Directed cycle no topologic order possible (consider vertices in the cycle).

・No directed cycle reverse DFS postorder is a topological order.

 
 
 
 
 
 
 
 
 
 
Goal. Given a digraph, find a directed cycle (if one exists).

Solution. DFS. What else? See textbook/precept.

⟹
⟹

39

Finding a directed cycle in a digraph

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5

 marked[] edgeTo[] onStack[]
0 1 2 3 4 5 ... 0 1 2 3 4 5 ... 0 1 2 3 4 5 ...

1 0 0 0 0 0 - - - - - 0 1 0 0 0 0 0
1 0 0 0 0 1 - - - - 5 0 1 0 0 0 0 1
1 0 0 0 1 1 - - - 4 5 0 1 0 0 0 1 1
1 0 0 1 1 1 - - - 4 5 0 1 0 0 1 1 1

a digraph with a directed cycle

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints,  
in which order should we schedule the tasks?

Remark. A directed cycle implies scheduling problem is infeasible.
40

https://xkcd.com/754

https://xkcd.com/754

Directed cycle detection application: cyclic inheritance

The Java compiler does directed cycle detection.

41

public class A extends B {
 ...
}

public class B extends C {
 ...
}

public class C extends A {
 ...
}

~/cos226/graph> javac A.java

A.java:1: cyclic inheritance involving A

public class A extends B { }

 ^

1 error

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does directed cycle detection.

42

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in directed graphs)
‣ breadth-first search (in undirected graphs)
‣ topological sort
‣ challenges

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph-processing challenge 1

Problem. Identify connected components.

 
 
 
 
How di"cult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows.

44

0-1

0-5

2-6

2-3

2-4

4-6

0

6

4

21

5

3

simple DFS- or BFS-based solution
(see textbook) 0

6

4

21

5

3

0

0

1

1

1

0

1

0

1

2

3

4

5

6

v id[]

Graph-processing challenge 1

Problem. Identify connected components.

 
Particle detection. Given grayscale image of particles, identify “blobs.”

・Vertex: pixel.

・Edge: between two adjacent pixels with grayscale value ≥ 70.

・Blob: connected component of 20–30 pixels.

45

Graph-processing challenge 2

Problem. Is a graph bipartite?

 
 
 
 
How di"cult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows.

46

0-1

0-2

0-5

0-6

1-3

2-3

2-4

4-5

4-6

0

6

4

21

5

3

easy via either DFS or BFS
(see precept)

0-1

0-2

0-5

0-6

1-3

2-3

2-4

4-5

4-6

0

6

4

21

5

3

{ 1, 2, 5, 6 }

Graph-processing challenge 3

Problem. Is there a (non-simple) cycle that uses every edge exactly once?

 
 
 
 
How di"cult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows.

47

0-1

0-2

0-5

0-6

1-2

2-3

2-4

3-4

4-5

4-6

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0yes if and only if graph is connected
and every vertex has even degree

(Euler 1786)

moreover, if graph is Eulerian,
can find a Euler cycle via DFS

(Hierholzer 1873)

Graph-processing challenge 4

Problem. Is there a cycle that uses every vertex exactly once?

 
 
 
 
How di"cult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows.

48

0-1

0-2

0-5

0-6

1-2

2-6

3-4

3-5

4-5

4-6

0

6

4

21

5

3

Hamilton cycle
(classic NP-complete problem)

0 -5 -3 -4 -6 -2 -1 -0

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

 
 
 
 
How di"cult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows.

49

graph isomorphism is
longstanding open problem

40

51

62

73

4′

0′ 1′

5′

3′

7′ 6′

2′

f(0) = 0′
f(1) = 5′
f(2) = 7′
f(3) = 2′
f(4) = 4′
f(5) = 1′
f(6) = 3′
f(7) = 6′

40

51

62

73

4′

0′ 1′

5′

3′

7′ 6′

2′

G2

G1

Problem. Can you draw a graph in the plane with no crossing edges?

 
 
 
 
How di"cult?

A. Diligent algorithms student could do it.

B. Hire an expert.

C. Intractable.

D. No one knows.

Graph-processing challenge 6

50

linear-time DFS-based planarity algorithm
discovered by Tarjan in 1970s

(too complicated for most practitioners)

0-1

0-5

0-6

1-4

1-5

1-7

try it yourself at
https://www.jasondavies.com/planarity

40

51

62

73

4

0 5

1

6

2 7

3

yes (a planar embedding)

2-4

2-6

2-7

3-5

3-6

3-7

https://www.jasondavies.com/planarity
http://planarity.net

Graph processing summary

BFS and DFS enables efficient solution of many (but not all) graph and digraph problems.

51

graph problem BFS DFS time

! s-t path ✔ ✔ E + V

! shortest s-t path ✔ E + V

! shortest directed cycle ✔ E V

! Euler cycle ✔ E + V

! Hamilton cycle

! bipartiteness (odd cycle) ✔ ✔ E + V

! connected components ✔ ✔ E + V

! strong components ✔ E + V

! planarity ✔ E + V

! graph isomorphism

2 1.657 V

2 c ln3 V

Graph-processing summary: algorithms of the week

52

single-source
reachability DFS/BFS

shortest paths BFS

topological sort DFS

s

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

53

media source license

ARPANET Wikimedia CC BY-SA 4.0

Oracle of Bacon oracleofbacon.org

Kevin Bacon Game Endless Games

Six Degrees of Hollywood Paradox Apps

Pedigree of King Charles II Waterford Treasures

Habsburg Coat of Arms Wikimedia CC BY-SA 3.0

Bayesian Network Thornley et. al

Dependencies xkcd CC BY-NC 2.5

Brownian Motion William Ryu permission by author

BFS Graph Visualization Gerry Jenkins

https://commons.wikimedia.org/wiki/File:Arpanet_in_the_1970s.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://oracleofbacon.org
https://www.amazon.com/Six-Degrees-Kevin-Bacon-Game/dp/B00000JIKJ
https://apps.apple.com/us/app/six-degrees-of-hollywood/id1262835314
https://www.waterfordtreasures.com/its-about-time-the-man-who-accidentally-became-a-clock-maker-to-the-king-of-spain/
https://commons.wikimedia.org/wiki/File:Arms_of_Counts_of_Habsbourg.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.semanticscholar.org/paper/Using-Directed-Acyclic-Graphs-for-Investigating-for-Thornley-Marshall/5c4e1666532aeeca10b2312358c53565a7285121
https://xkcd.com/754
https://creativecommons.org/licenses/by-nc/2.5/
https://www.youtube.com/watch?v=x-VTfcmrLEQ

BFS visualization (by Gerry Jenkins)

54
https://www.youtube.com/watch?v=x-VTfcmrLEQ

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

