Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4. GRAPHS AND DIGRAPHS I

introduction

 graph representation depth-first search

path finding

undirected graphs

ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 3/25/25 2:00PM

4. GRAPHS AND DIGRAPHS I

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Graph. Set of vertices connected pairwise by edges.

Why study graphs and graph algorithms?

- Hundreds of graph algorithms.
- Thousands of real-world applications.
- Fascinating branch of computer science and discrete math.

Vertex = subway stop; edge = direct route.

London Underground (Tube) Map

Vertex = person; edge = LinkedIn connection.

LinkedIn social network

personal

Vertex = Twitter account; edge = Twitter follower.

Protein-protein interaction network

Vertex = protein; edge = interaction.

yeast protein interaction map

7

Graph applications

graph	vertex	
cell phone	phone	
infectious disease	person	
financial	stock, currency	
game	board position	
transportation	intersection	
internet	router	
web	web page	
social relationship	person	
object	object	
protein network	protein	pr
circuit	logic gate	
neural network	neuron	

edge

placed call

infection

transactions

legal move

street

fiber optic cable

URL link

friendship

pointer / reference

rotein-protein interaction

wire

synapse

Undirected graph terminology

Graph.	Set of vertices connected pairwise by edg
Path.	Sequence of vertices connected by edges
Connected.	Two vertices are connected if there is a p
Cycle.	Path (with ≥ 1 edge) whose first and last

ges.

- s, with no repeated edges.
- bath between them.
- vertices are the same.

Directed graph terminology

Set of vertices connected pairwise by directed edges. Digraph. Sequence of vertices connected by directed edges, with no repeated edges. Directed path. Reachable. Vertex w is reachable from vertex v if there is a directed path from v to w. **Directed cycle.** Directed path (with ≥ 1 edge) whose first and last vertices are the same.

Graphs and digraphs I: poll 1

Which of these graphs is best modeled as a directed graph?

- **A.** Facebook: vertex = person; edge = friendship.
- **B.** Web: vertex = webpage; edge = URL link.
- vertex = router; edge = fiber optic cable. С. Internet:
- Molecule: vertex = atom; edge = chemical bond. D.

Some graph-processing problems

	graph problem	de
	s-t path	Find a pat
	shortest s-t path	Find a path with the
	cycle	Fin
	Euler cycle	Find a cycle that us
X	Hamilton cycle	Find a cycle that us
	connected components	Find conn
	graph isomorphism	Find an isomorph
	planarity	Draw in the plan

Challenge. Which problems are easy? Difficult? Intractable?

escription

th between s and t.

fewest edges between s to t.

ind a cycle.

ses each edge exactly once.

ses each vertex exactly once.

nected components.

hism between two graphs.

ne with no crossing edges.

also digraph versions

4. GRAPHS AND DIGRAPHS I

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

graph representation

depth-first search

introduction

path finding
 undirected graphs

Vertex representation.

- This lecture: integers between 0 and V-1.
- Real-world applications: use symbol table to convert between names and integers.

Def. A digraph is simple if it has no self-loops or parallel edges.

parallel edges

Digraph API

public class Digraph			
	Digraph(int V)	create	
void	addEdge(int v, int w)	add a	
Iterable <integer></integer>	adj(int v)	vertice	
int	V()	numbe	
Digraph	reverse()	revers	
	:	• •	

```
// outdegree of vertex v in digraph G
public static int outdegree(Digraph G, int v) {
    int count = 0;
    for (int w : G.adj(v))
        count++;
    return count;
}
```

an empty digraph with V vertices

directed edge $v \rightarrow w$ \leftarrow our API allows self-loops and parallel edges

es adjacent from v

er of vertices

se digraph

Note: this method is in full Digraph API (so, no need to re-implement)

Digraph representation: adjacency matrix

Maintain a V-by-V boolean array adj[][] with adj[v][w] true if and only if $v \rightarrow w$ is an edge.

adj

Memory. $\Theta(V^2)$ space.

adj[][]														
		0	1	2	3	4	5	6	7	8	9	10	11	12
	0	0	1	0	0	0	1	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	1	0	0	1	0	0	0	0	0	0	0	0	0
	3	0	0	1	0	0	1	0	0	0	0	0	0	0
	4	0	0	1	1	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0	0	0	0	0
from	6	0	0	0	0	1	0	0	0	1	1	0	0	0
	7	0	0	0	0	0	0	1	0	0	1	0	0	0
	8	0	0	0	0	0	0	1	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	0	0	1	1	0
	10	0	0	0	0	0	0	0	0	0	0	0	0	1
	11	0	0	0	0	1	0	0	0	0	0	0	0	1
	12	0	0	0	0	0	0	0	0	0	1	0	0	0

to

Note: parallel edges disallowed

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists: adj[v] contains vertices adjacent from vertex v.

Memory. $\Theta(E + V)$ space.

adj[
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						

Graphs and digraphs I: poll 2

What is the running time of the following code fragment in the worst case? Assume adjacency-lists representation, with V = # vertices and E = # edges.

for (int v = 0; v < G.V(); v++) for (int w : G.adj(v)) StdOut.println(v + "->" + w);

print each edge once

- Α. $\Theta(V)$
- B. $\Theta(E+V)$
- $\Theta(V^2)$ С.
- $\Theta(EV)$ D.

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world graphs tend to be sparse (not dense).

representation	space	add edge from v to w	has edge from v to w?	iterate over vertices adjacent from v?
adjacency matrix	V^2	1	1	V^{\dagger}
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

Digraph representation (adjacency lists): Java implementation

```
public class Digraph {
    private final int V;
    private Queue<Integer>[] adj;
    public Digraph(int V) {
      this.V = V;
      adj = (Queue<Integer>[]) new Queue[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Queue<>();
    }
    public void addEdge(int v, int w) {
       adj[v].enqueue(w);
    }
    public Iterable<Integer> adj(int v) {
       return adj[v];
    }
```

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html

adjacency lists (could also use a stack)

create empty digraph with V vertices

add edge $v \rightarrow w$ (parallel edges and self-loops allowed)

iterator for vertices adjacent from v

4. GRAPHS AND DIGRAPHS I

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- graph representation

depth-first search

introduction

path finding
 undirected graphs

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Depth-first search. A systematic method to explore all vertices reachable from *s*.

DFS (to visit a vertex v)

Mark vertex v.

Recursively visit all unmarked

vertices w adjacent from v.

Depth-first search (in a digraph) demo

To visit a vertex v:

- Mark vertex *v*.
- Recursively visit all unmarked vertices adjacent from

a directed graph

	4→2
	2→3
	3→2
m <i>v</i> .	6→0
	0→1
	2→0
	11→12
	12→9
	9→10
	9→11
	8→9
	10→12
	11→4
	4→3
	3→5
	6→8
	8→6
	5→4
	0→5
	6→4
	6→9
	7→6

Depth-first search (in a digraph) demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent from v.

reachable from 0

Graphs and digraphs I: poll 3

Run DFS using the given adjacency-lists representation of digraph G, starting at vertex 0. In which order is dfs(G, v) called?

- A. 0124536
- **B.** 0124563
- **C.** 0132645
- **D.** 0126453

adjacency-lists representation

digraph G

Depth-first search: Java implementation

```
public class DirectedDFS {
    private boolean[] marked;
    public DirectedDFS(Digraph G, int s) {
      marked = new boolean[G.V()];
      dfs(G, s);
    }
    private void dfs(Digraph G, int v) {
      marked[v] = true;
       for (int w : G.adj(v))
         if (!marked[w])
             dfs(G, w);
    }
```

```
public boolean isReachable(int v) {
   return marked[v];
```

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is v reachable from s?

Proposition. DFS uses $\Theta(V)$ extra space (not including the digraph itself). Pf.

- The marked[] array uses $\Theta(V)$ space.
- The function-call stack uses $\Theta(V)$ space in the worst case.

Proposition. DFS marks all vertices reachable from s in $\Theta(E + V)$ time in the worst case. Pf.

- Initializing the marked[] array takes $\Theta(V)$ time.
- Each vertex is visited at most once.
- Visiting a vertex takes time proportional to its outdegree:

 $outdegree(v_0) + outdegree(v_1) + outdegree(v_2) + \dots = E$ in the worst case, all vertices are reachable from s

Note. If all vertices are reachable from s, then $E \ge V - 1$ and running time simplifies to $\Theta(E)$.

Graphs and digraphs I: poll 4

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

- **A.** Marks a vertex not reachable from *s*.
- **B.** Compile-time error.
- **C.** Infinite loop / stack overflow.
- **D.** None of the above.


```
private void dfs(Digraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
    marked[v] = true;
}
```


Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

6 If-Consequent

Every data structure is a digraph.

- Vertex = object.
- Edge = reference/pointer.

Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses one extra mark bit per object (plus DFS function-call stack).

4. GRAPHS AND DIGRAPHS I

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

graph representation
 depth-first search

introduction

path finding
 undirected graphs

Directed paths DFS demo

Goal. DFS determines which vertices are reachable from *s*. How to reconstruct paths? Solution. Use parent-link representation.

reachable from 0

Depth-first search: path finding

Parent-link representation of paths from s.

- Maintain an integer array edgeTo[].
- Interpretation: edgeTo[v] is the next-to-last vertex on a path from s to v.
- To reconstruct path from s to v, trace edgeTo[] backward from v to s (and reverse).


```
ex on a path from s to v.
ackward from v to s (and reverse).
```

Depth-first search (with path finding): Java implementation

https://algs4.cs.princeton.edu/42digraph/DepthFirstDirectedPaths.java.html

Graphs and digraphs I: poll 5

Suppose there are many paths from s to v. Which one does DepthFirstDirectedPaths find?

- A shortest path (fewest edges). Α.
- A longest path (most edges). B.
- Depends on digraph representation. С.

4. GRAPHS AND DIGRAPHS I

introduction

path finding

-graph representation

depth-first search

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

undirected graphs

Flood fill

Problem. Implement flood fill (Photoshop magic wand).

Depth-first search in undirected graphs

Connectivity problem. Given an undirected graph G and vertex s, find all vertices connected to s. Solution. Use DFS. \leftarrow but now, for each undirected edge v-w: v is adjacent to w and w is adjacent to v

DFS (to visit a vertex v)

Mark vertex v.

Recursively visit all unmarked

vertices w adjacent to v.

Proposition. DFS marks all vertices connected to *s* in $\Theta(E + V)$ time in the worst case.

Depth-first search (in an undirected graph) demo

To visit a vertex v:

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

8

10

12

Depth-first search (in an undirected graph) demo

To visit a vertex v:

- Mark vertex *v*.
- Recursively visit all unmarked vertices adjacent to v.

vertices connected to 0 (and associated paths)

8	V	n
	0	
	1	
	2	
10	3	
	4	
	5	
12	6	
	7	
	8	
	9	
	10	
	11	

V	marked[]	edgeTo[]
0	Т	_
1	Т	0
2	Т	0
3	Т	5
4	Т	6
5	Т	4
6	Т	0
7	F	_
8	F	_
9	F	_
.0	F	_
.1	F	_
.2	F	_

Graphs and digraphs I: poll 6

How to represent an undirected edge v-w using adjacency lists?

- A. Add w to adjacency list for v.
- **B.** Add v to adjacency list for w.
- C. Both A and B.
- **D.** None of the above.

Directed graph representation (review)

```
public class Digraph {
    private final int V;
    private Queue<Integer>[] adj;
    public Digraph(int V) {
      this.V = V;
      adj = (Queue<Integer>[]) new Queue[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Queue<>();
    }
    public void addEdge(int v, int w) {
       adj[v].enqueue(w);
    }
    public Iterable<Integer> adj(int v) {
       return adj[v];
    }
```

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html

adjacency lists

create empty digraph with V vertices

add edge $v \rightarrow w$

iterator for vertices adjacent from v

Undirected graph representation

```
public class Graph {
    private final int V;
    private Queue<Integer>[] adj;
    public Graph(int V) {
      this.V = V;
      adj = (Queue<Integer>[]) new Queue[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Queue<>();
    }
    public void addEdge(int v, int w) {
       adj[v].enqueue(w);
       adj[w].enqueue(v);
    }
    public Iterable<Integer> adj(int v) {
                                           -
       return adj[v];
    }
```

https://algs4.cs.princeton.edu/41graph/Graph.java.html

adjacency lists

create empty graph with V vertices

add edge v–w

iterator for vertices adjacent to v

Depth-first search (in directed graphs)

```
public class DirectedDFS {
    private boolean[] marked;
    public DirectedDFS(Digraph G, int s) {
     marked = new boolean[G.V()];
     dfs(G, s);
    }
    private void dfs(Digraph G, int v) {
      marked[v] = true;
       for (int w : G.adj(v))
         if (!marked[w])
             dfs(G, w);
    }
```

```
public boolean isReachable(int v) {
    return marked[v];
```

}

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is v reachable from s?

Depth-first search (in undirected graphs)

```
public class DepthFirstSearch {
    private boolean[] marked;
    public DirectedDFS(Graph G, int s) {
     marked = new boolean[G.V()];
     dfs(G, s);
    }
    private void dfs(Graph G, int v) {
      marked[v] = true;
       for (int w : G.adj(v))
          if (!marked[w])
            dfs(G, w);
    }
    public boolean isConnected(int v) {
      return marked[v];
```

https://algs4.cs.princeton.edu/41graph/DepthFirstSearch.java.html

marked[v] = true if v is connected to s

constructor marks vertices connected to s

recursive DFS does the work

is v connected to s?

v connecteu to s :

Depth-first search summary

DFS enables direct solution of several elementary graph and digraph problems.

- Reachability (in a digraph).
- Connectivity (in a graph).
- Path finding (in a graph or digraph). \checkmark
- Topological sort. ← next lecture
- Directed cycle detection. precept

DFS is also core of solution to more advanced problems.

- Euler cycle.
- Biconnectivity.
- 2-satisfiability.
- Planarity testing.
- Strong components.
- Nonbipartite matching.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

of edges of the graph being examined.

. . .

ROBERT TARJAN[†]

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number

Credits

image	
Pac–Man Graph	
Pac–Man Game	<u>Old</u>
London Tube Map	Tra
London Tube Graph	
LinkedIn Social Network	
Twitter Graph	
Protein Interaction Graph	Hav
PageRank	
Control Flow Graph	
DFS Graph Visualization	

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

source	license
<u>Oatzy</u>	
Classic Retro Gaming	
ransport for London	
visualize.org	
Caleb Jones	
Caleb Jones	
wing Jeong / KAIST	
<u>Wikipedia</u>	public domain
Stack Exchange	
Gerry Jenkins	

DFS visualization (by Gerry Jenkins)

https://www.youtube.com/watch?v=NUgMa5coCoE