
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 3/25/25 2:00  PM

4.  GRAPHS AND DIGRAPHS I

‣ introduction 

‣ graph representation 

‣ depth-first search 

‣ path finding 

‣ undirected graphs
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


4.  GRAPHS AND DIGRAPHS I

‣ introduction 

‣ graph representation 

‣ depth-first search 

‣ path finding 

‣ undirected graphsROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Graphs

Graph.  Set of vertices connected pairwise by edges. 
 
Why study graphs and graph algorithms? 

・Hundreds of graph algorithms. 

・Thousands of real-world applications.  

・Fascinating branch of computer science and discrete math.

3



Transportation networks

Vertex = subway stop; edge = direct route.

4
London Underground (Tube) Map



Social networks

Vertex = person; edge = LinkedIn connection.

5LinkedIn social network

Cisco

Disney

personal

Pure
Networks

recruiters



Twitter followers

Vertex = Twitter account; edge = Twitter follower.

6
Twitter follower subgraph



Protein-protein interaction network

Vertex = protein; edge = interaction.

7yeast protein interaction map



Graph applications

8

graph vertex edge

cell phone phone placed call

infectious disease person infection

financial stock, currency transactions

game board position legal move

transportation intersection street

internet router fiber optic cable

web web page URL link

social relationship person friendship

object object pointer / reference

protein network protein protein–protein interaction

circuit logic gate wire

neural network neuron synapse



Undirected graph terminology

Graph. Set of vertices connected pairwise by edges. 
Path. Sequence of vertices connected by edges, with no repeated edges. 
Connected. Two vertices are connected if there is a path between them.  
Cycle. Path (with  edge) whose first and last vertices are the same.≥ 1

9

1

4

9

2

5

3

0

1211

10

2

3

0

7

vertex 6
(of degree 3)

path between 0 and 2
(of length 3)

5

edge 6–8
(incident to vertices 6 and 8)

6 86 8

1

4

2

0

5

4

9

1211

10

cycle
(of length 4)

9

1211

10



Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges. 
Directed path. Sequence of vertices connected by directed edges, with no repeated edges. 
Reachable. Vertex  is reachable from vertex  if there is a directed path from  to .  
Directed cycle. Directed path (with  edge) whose first and last vertices are the same.

w v v w
≥ 1

10

1

4

9

2

5

3

0

1211

10

1

4

9

2

5

3

0

1211

10

8 76

vertex 6
outdegree = 4
  indegree = 2

directed cycle
(of length 3)

directed path
from 0 to 2

(of length 3)

4

2

5

0

9

12

10

6

directed edge 7→6
7 is adjacent to 6

6 is adjacent from 7

7



Graphs and digraphs I:  poll 1

Which of these graphs is best modeled as a directed graph?  

A. Facebook: vertex = person; edge = friendship. 

B. Web: vertex = webpage; edge = URL link. 

C. Internet: vertex = router; edge = fiber optic cable. 

D. Molecule: vertex = atom; edge = chemical bond.

11

1.6%

1.6%

1.6%
1.6%1.6%

D
3.9%

F
3.9%

E
8.1%

C
34.3%B

38.4%A
3.3%

Brin and Page famously analyzed
this digraph in 1998 (PageRank)



Some graph-processing problems

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge.  Which problems are easy? Difficult? Intractable?

12

😁

😁

😁

😁

👿

😁

🤷

😀

graph problem description

s-t path Find a path between s and t.

shortest s-t path Find a path with the fewest edges between s to t.

cycle Find a cycle.

Euler cycle Find a cycle that uses each edge exactly once.

Hamilton cycle Find a cycle that uses each vertex exactly once.

connected components Find connected components.

graph isomorphism Find an isomorphism between two graphs.

planarity  Draw in the plane with no crossing edges.

also digraph versions



4.  GRAPHS AND DIGRAPHS I

‣ introduction 

‣ graph representation 

‣ depth-first search 

‣ path finding 

‣ undirected graphsROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Digraph representation

Vertex representation. 

・This lecture: integers between  and . 

・Real-world applications: use symbol table to convert between names and integers. 
 
 
 
 
 
 
 
 
 
Def.  A digraph is simple if it has no self-loops or parallel edges.

0 V − 1

14

symbol table

A

G

E

CB

F

D

0

1

5

34

6

2

100

parallel edges
self-loop



Digraph API

15

// outdegree of vertex v in digraph G 
public static int outdegree(Digraph G, int v) { 
    int count = 0; 
    for (int w : G.adj(v)) 
       count++; 
    return count; 
}

Note:  this method is in full Digraph API 
(so, no need to re-implement)

our API allows self-loops and parallel edges

      public class Digraph

Digraph(int V) create an empty digraph with V vertices

void addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v) vertices adjacent from v

int V() number of vertices

Digraph reverse() reverse digraph

   ⋮   ⋮



Digraph representation:  adjacency matrix

Maintain a -by-  boolean array adj[][] with adj[v][w] true if and only if →  is an edge. 

 
Memory.   space.

V V v w

Θ(V2)

16

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 1 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 1 0 0 0 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0

6 0 0 0 0 1 0 0 0 1 1 0 0 0

7 0 0 0 0 0 0 1 0 0 1 0 0 0

8 0 0 0 0 0 0 1 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 1 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 1 0 0 0

from

to
adj[][]

Note:  parallel edges disallowed

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E



adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E

adj[]

0
1
2
3
4
5
6
7
8
9
10
11
12

Maintain vertex-indexed array of lists:  adj[v] contains vertices adjacent from vertex . 
 
Memory.   space.

v

Θ(E + V )

Digraph representation:  adjacency lists

17

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E



Graphs and digraphs I:  poll 2

What is the running time of the following code fragment in the worst case? 
Assume adjacency-lists representation, with # vertices and # edges.
 

A.    

B.   

C.    

D.   

V = E =

Θ(V )

Θ(E + V )

Θ(V2)

Θ(E V )

18

outdegree(v0)  +  outdegree(v1)  +  outdegree(v2)   + …   =   E

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "->" + w);

print each edge once
adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4  2
 2  3
 3  2
 6  0
 0  1
 2  0
11 12
12  9
 9 10
 9 11
 7  9
10 12
11  4
 4  3
 3  5
 6  8
 8  6
 5  4
 0  5
 6  4
 6  9
 7  6

tinyDG.txt
V

E

adj[]

0
1
2
3
4
5
6
7
8
9
10
11
12



Digraph representations

In practice.  Use adjacency-lists representation. 

・Algorithms based on iterating over vertices adjacent from . 

・Real-world graphs tend to be sparse (not dense).
v

19

representation space
add edge 

from v to w
has edge 

from v to w?
iterate over vertices 

adjacent from v?

adjacency matrix V 2   1 1 V  †

adjacency lists E + V 1 outdegree(v) outdegree(v)

† disallows parallel edges

Θ(V) edges Θ(V 2) edges



Digraph representation (adjacency lists):  Java implementation

20

public class Digraph { 
 

 

 
 

}

private final int V; 
private Queue<Integer>[] adj;

public Iterable<Integer> adj(int v) { 
   return adj[v]; 
}

public Digraph(int V) { 
  this.V = V; 
  adj = (Queue<Integer>[]) new Queue[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Queue<>(); 
}

public void addEdge(int v, int w) { 
   adj[v].enqueue(w); 
}

adjacency lists
(could also use a stack)

create empty digraph with V vertices

add edge v→w 
(parallel edges and self-loops allowed)

iterator for vertices adjacent from v

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html

https://algs4.cs.princeton.edu/41undirected/Graph.java.html


4.  GRAPHS AND DIGRAPHS I

‣ introduction 

‣ graph representation 

‣ depth-first search 

‣ path finding 

‣ undirected graphsROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Reachability problem in a digraph

Reachability problem.  Given a digraph  and vertex , find all vertices reachable from .G s s

22

s



Reachability problem in a digraph

Reachability problem.  Given a digraph  and vertex , find all vertices reachable from . 
 
Depth-first search.  A systematic method to explore all vertices reachable from .

G s s

s

23

Mark vertex v.
Recursively visit all unmarked
          vertices w adjacent from v.

DFS (to visit a vertex v)



Depth-first search (in a digraph) demo

To visit a vertex  : 

・Mark vertex . 

・Recursively visit all unmarked vertices adjacent from .

v
v

v

1

4

9

2

5

3

0

1211

10

24

a directed graph

4→2 
2→3 
3→2 
6→0 
0→1  
2→0 
11→12 
12→9 
9→10 
9→11 
8→9 
10→12 
11→4 
4→3 
3→5 
6→8 
8→6 
5→4 
0→5 
6→4 
6→9 
7→6

1

4

9

2

5

3

0

1211

10

8 76



Depth-first search (in a digraph) demo

To visit a vertex  : 

・Mark vertex . 

・Recursively visit all unmarked vertices adjacent from .

v
v

v

T 

T  

T 

T 

T  

T 

F 

F 

F 

F  

F 

F 

F

marked[]

1

9

2

5

3

0

1211

10

8 76

25

reachable from 0

reachable
from vertex 0

0  

1  

2 

3 

4  

5 

6 

7 

8 

9  

10 

11 

12

v

4



Graphs and digraphs I:  poll 3

Run DFS using the given adjacency-lists representation of digraph ,  
starting at vertex . In which order is dfs(G, v) called?

A.  0 1 2 4 5 3 6

B.  0 1 2 4 5 6 3

C.  0 1 3 2 6 4 5

D.  0 1 2 6 4 5 3

G
0

26

0 1

4

2

5

3 6

DFS preorder

adj[]
0

1

2

3

4

5

6

1 4

2 3

5

6 4

digraph Gadjacency-lists representation

adj[]

0

1

2

3

4

5

6



Depth-first search:  Java implementation

27

public class DirectedDFS { 
 
 
 

}

public DirectedDFS(Digraph G, int s) { 
   marked = new boolean[G.V()]; 
   dfs(G, s); 
}

private void dfs(Digraph G, int v) { 
   marked[v] = true; 
   for (int w : G.adj(v)) 
      if (!marked[w]) 
         dfs(G, w); 
}

public boolean isReachable(int v) { 
   return marked[v]; 
}

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is v reachable from s ?

private boolean[] marked;

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html


Depth-first search:  analysis

Proposition.  DFS uses  extra space (not including the digraph itself). 
Pf. 

・The marked[] array uses  space. 

・The function-call stack uses  space in the worst case. 
 
Proposition.  DFS marks all vertices reachable from  in  time in the worst case. 
Pf. 

・Initializing the marked[] array takes  time. 

・Each vertex is visited at most once. 

・Visiting a vertex takes time proportional to its outdegree:  
 
 
 
 

Note.  If all vertices are reachable from , then  and running time simplifies to .

Θ(V )

Θ(V )
Θ(V )

s Θ(E + V )

Θ(V )

s E ≥ V − 1 Θ(E)
28

outdegree(v0)  +  outdegree(v1)  +  outdegree(v2)   +  …   =   E

in the worst case,
all vertices are reachable from s



Graphs and digraphs I:  poll 4

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

A. Marks a vertex not reachable from .

B. Compile-time error.

C. Infinite loop / stack overflow.

D. None of the above.

s

29

private void dfs(Digraph G, int v) { 

  marked[v] = true; 

  for (int w : G.adj(v)) 

     if (!marked[w]) 

        dfs(G, w); 

  marked[v] = true; 

}

0

23

1



Reachability application:  program control-flow analysis

Every program is a digraph. 

・Vertex = basic block of instructions (straight-line program). 

・Edge = jump. 
 
Dead-code elimination.  
Find (and remove) unreachable code.  
 
Infinite-loop detection.  
Determine whether exit is unreachable.

30



Reachability application:  mark–sweep garbage collector

Every data structure is a digraph. 

・Vertex = object. 

・Edge = reference/pointer. 
 
Roots.  Objects known to be directly accessible by program (e.g., stack frame). 
 
Reachable objects.  Objects indirectly accessible by program 
(starting at a root and following a chain of pointers).

31

roots



Reachability application:  mark–sweep garbage collector

Mark–sweep algorithm.  [McCarthy, 1960] 

・Mark:  mark all reachable objects. 

・Sweep:  if object is unmarked, it is garbage (so add to free list). 
 
Memory cost.  Uses one extra mark bit per object (plus DFS function-call stack).

32

roots



4.  GRAPHS AND DIGRAPHS I

‣ introduction 

‣ graph representation 

‣ depth-first search 

‣ path finding 

‣ undirected graphsROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Directed paths DFS demo

Goal.  DFS determines which vertices are reachable from . How to reconstruct paths? 
Solution.  Use parent-link representation.

s

T 

T  

T 

T 

T  

T 

F 

F 

F 

F  

F 

F 

F

marked[]

1

9

2

5

3

0

1211

10

8 76

34

reachable from 0

parent-link representation
of paths from vertex 0

0  

1  

2 

3 

4  

5 

6 

7 

8 

9  

10 

11 

12

– 

0  

3 

4 

5  

0 

– 

– 

– 

–  

– 

– 

–

v edgeTo[]

4



Depth-first search:  path finding

Parent-link representation of paths from . 

・Maintain an integer array edgeTo[].  

・Interpretation:  edgeTo[v] is the next-to-last vertex on a path from  to . 

・To reconstruct path from  to , trace edgeTo[] backward from  to  (and reverse).

s

s v
s v v s

35

1

2

5

3

0

6

4

T 

T  

T 

T 

T  

T 

F

marked[]

0  

1  

2 

3 

4  

5 

6

– 

0  

3 

4 

5  

0 

–

v edgeTo[]  public Iterable<Integer> pathTo(int v) { 
    if (!marked[v]) return null; 
    Stack<Integer> path = new Stack<>(); 
    for (int x = v; x != s; x = edgeTo[x]) 
       path.push(x); 
    path.push(s); 
    return path; 
 }



Depth-first search (with path finding):  Java implementation

36

public class DepthFirstDirectedPaths { 
 
 
 

 

}

public DepthFirstDirectedPaths(Digraph G, int s) { 
   ... 
   dfs(G, s); 
}

private void dfs(Digraph G, int v) { 
   marked[v] = true; 
   for (int w : G.adj(v)) { 
      if (!marked[w]) { 
         dfs(G, w); 
         edgeTo[w] = v; 
      } 
   } 
}

private boolean[] marked; 
private int[] edgeTo; 
private int s;

v→w is edge that led
to the discovery of w

edgeTo[v] = previous vertex
on path from s to v

https://algs4.cs.princeton.edu/42digraph/DepthFirstDirectedPaths.java.html

https://algs4.cs.princeton.edu/42digraph/DepthFirstDirectedPaths.java.html


Graphs and digraphs I:  poll 5

Suppose there are many paths from  to . Which one does DepthFirstDirectedPaths find?

A. A shortest path (fewest edges).

B. A longest path (most edges).

C. Depends on digraph representation.

s v

37

0 321

s v

next lecture:  use breadth-first search to find shortest paths



4.  GRAPHS AND DIGRAPHS I

‣ introduction 

‣ graph representation 

‣ depth-first search 

‣ path finding 

‣ undirected graphsROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Problem.  Implement flood fill (Photoshop magic wand). 
 
 

 

 
 
 
 
Solution.  Build a grid graph (implicitly). 

・Vertex:  pixel. 

・Edge:  between two adjacent gray pixels. 

・Blob:  all pixels connected to given pixel. 
 
Extra concern.  Function-call stack depth.

39

Flood fill

undirected graph



Depth-first search in undirected graphs

Connectivity problem.  Given an undirected graph  and vertex , find all vertices connected to . 
Solution.  Use DFS. 
 
 
 
 
 
 
 
 
 
 
 
Proposition.  DFS marks all vertices connected to  in  time in the worst case.

G s s

s Θ(E + V )

40

Mark vertex v.
Recursively visit all unmarked
          vertices w adjacent to v.

DFS (to visit a vertex v)

but now, for each undirected edge v–w: 
v is adjacent to w and w is adjacent to v



Depth-first search (in an undirected graph) demo

To visit a vertex  : 

・Mark vertex . 

・Recursively visit all unmarked vertices adjacent to .

v
v

v

87

109

1211

0

6

4

21

5

3

41

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E



Depth-first search (in an undirected graph) demo

To visit a vertex  : 

・Mark vertex . 

・Recursively visit all unmarked vertices adjacent to .

v
v

v

0

4

5

621

3

42

87

109

1211

87

109

1211

0  

1  

2 

3 

4  

5 

6 

7 

8 

9  

10 

11 

12

v marked[]

T 

T  

T 

T 

T  

T 

T 

F 

F 

F  

F 

F 

F

edgeTo[]

– 

0  

0 

5 

6  

4 

0 

– 

– 

–  

– 

– 

–vertices connected to 0
(and associated paths)



Graphs and digraphs I:  poll 6

How to represent an undirected edge –  using adjacency lists?

A.  Add  to adjacency list for .

B.  Add  to adjacency list for .

C.  Both A and B.

D.  None of the above.

v w

w v

v w

43

0 1

5

3 6

adj[]
0

1

2

3

4

5

6

1 4

0 2

1

0 5

4

1 6 4

2

2

3

4

2

alternative viewpoint: a digraph in which each undirected edge
is replaced by two antiparallel edges

adj[]

0

1

2

3

4

5

6



Directed graph representation (review)

44

public class Digraph { 
 

 

 
 

}

private final int V; 
private Queue<Integer>[] adj;

public Iterable<Integer> adj(int v) { 
   return adj[v]; 
}

public Digraph(int V) { 
  this.V = V; 
  adj = (Queue<Integer>[]) new Queue[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Queue<>(); 
}

public void addEdge(int v, int w) { 
   adj[v].enqueue(w); 
 
}

adjacency lists

create empty digraph with V vertices

add edge v→w

iterator for vertices adjacent from v

https://algs4.cs.princeton.edu/42digraph/Digraph.java.html

https://algs4.cs.princeton.edu/41undirected/Graph.java.html


Undirected graph representation

45

public class Graph { 
 

 

 
 

}

private final int V; 
private Queue<Integer>[] adj;

public Iterable<Integer> adj(int v) { 
   return adj[v]; 
}

public Graph(int V) { 
  this.V = V; 
  adj = (Queue<Integer>[]) new Queue[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Queue<>(); 
}

public void addEdge(int v, int w) { 
   adj[v].enqueue(w); 
   adj[w].enqueue(v); 
}

create empty graph with V vertices

add edge v–w

iterator for vertices adjacent to v

https://algs4.cs.princeton.edu/41graph/Graph.java.html

adjacency lists

https://algs4.cs.princeton.edu/41graph/Graph.java.html


Depth-first search (in directed graphs)

46

public class DirectedDFS { 
 
 
 

}

public DirectedDFS(Digraph G, int s) { 
  marked = new boolean[G.V()]; 
  dfs(G, s); 
}

private void dfs(Digraph G, int v) { 
   marked[v] = true; 
   for (int w : G.adj(v)) 
      if (!marked[w]) 
         dfs(G, w); 
}

public boolean isReachable(int v) { 
   return marked[v]; 
}

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is v reachable from s ?

private boolean[] marked;

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html

https://algs4.cs.princeton.edu/42digraph/DirectedDFS.java.html


Depth-first search (in undirected graphs)

47

public class DepthFirstSearch { 
 
 
 

}

public DirectedDFS(Graph G, int s) { 
  marked = new boolean[G.V()]; 
  dfs(G, s); 
}

private void dfs(Graph G, int v) { 
   marked[v] = true; 
   for (int w : G.adj(v)) 
      if (!marked[w]) 
         dfs(G, w); 
}

public boolean isConnected(int v) { 
   return marked[v]; 
}

marked[v] = true if v is connected to s

constructor marks vertices connected to s

recursive DFS does the work

is v connected to s ?

private boolean[] marked;

https://algs4.cs.princeton.edu/41graph/DepthFirstSearch.java.html

https://algs4.cs.princeton.edu/41graph/DepthFirstSearch.java.html


Depth-first search summary

DFS enables direct solution of several elementary graph and digraph problems. 

・Reachability (in a digraph). 

・Connectivity (in a graph). 

・Path finding (in a graph or digraph). 

・Topological sort. 

・Directed cycle detection.           
 
 
DFS is also core of solution to more advanced problems. 

・Euler cycle. 

・Biconnectivity. 

・2-satisfiability. 

・Planarity testing. 

・Strong components. 

・Nonbipartite matching. 

・…
48

✓

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.

146

✓

next lecture

precept

✓



Lecture Slides  © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

49

image source license

Pac–Man Graph Oatzy

Pac–Man Game Old Classic Retro Gaming

London Tube Map Transport for London

London Tube Graph visualize.org

LinkedIn Social Network Caleb Jones

Twitter Graph Caleb Jones

Protein Interaction Graph Hawing Jeong / KAIST

PageRank Wikipedia public domain

Control Flow Graph Stack Exchange

DFS Graph Visualization Gerry Jenkins

https://oatzy.blogspot.com/2011/09/playing-with-pac-man.html
https://www.youtube.com/watch?v=dScq4P5gn4A
https://content.tfl.gov.uk/standard-tube-map.pdf
https://visualign.org/2012/07/11/london-tube-map-and-graph-visualizations/
http://allthingsgraphed.com/2014/10/16/your-linkedin-network/
https://allthingsgraphed.com/2014/11/02/twitter-friends-network/
https://images.nigms.nih.gov/Pages/DetailPage.aspx?imageID2=2423#
https://en.wikipedia.org/wiki/File:PageRanks-Example.svg
https://creativecommons.org/share-your-work/public-domain/
https://cs.stackexchange.com/questions/77017/best-algorithm-for-sequencing-reducible-control-flow-graph
https://www.youtube.com/watch?v=NUgMa5coCoE


DFS visualization (by Gerry Jenkins)

50
https://www.youtube.com/watch?v=NUgMa5coCoE

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

