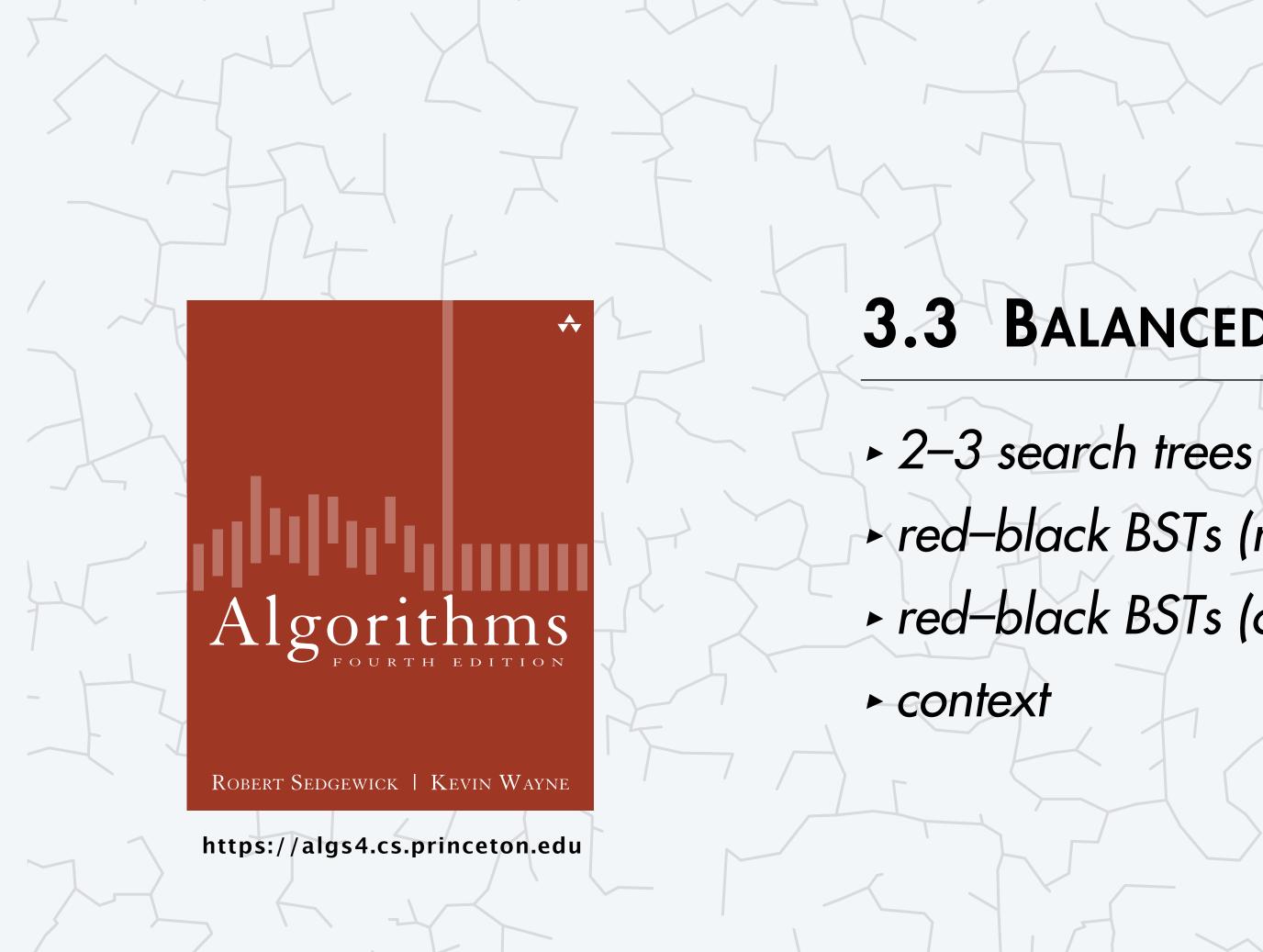
Algorithms



ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

red-black BSTs (representation)

red-black BSTs (operations)

Last updated on 2/26/25 8:11PM

Symbol table review

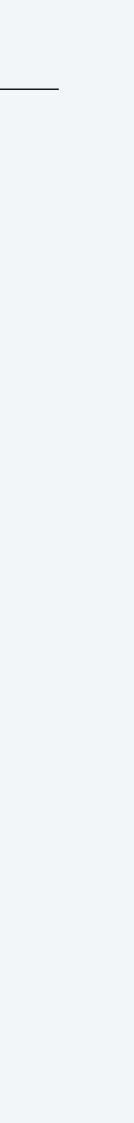
implementation	worst case			ordered	key	
	search	insert	delete	ops?	interface	emoji
sequential search (unordered list)	п	п	п		equals()	
binary search (sorted array)	log n	п	п	V	<pre>compareTo()</pre>	
BST	n	n	п	V	<pre>compareTo()</pre>	
goal	log n	log n	log n	¥	<pre>compareTo()</pre>	

Challenge. $O(\log n)$ time in worst case.

optimized for teaching and coding (*introduced in* COS 226)

This lecture. 2-3 trees and left-leaning red-black BSTs.

co-invented by Bob Sedgewick in the 1970s



3.3 BALANCED SEARCH TREES

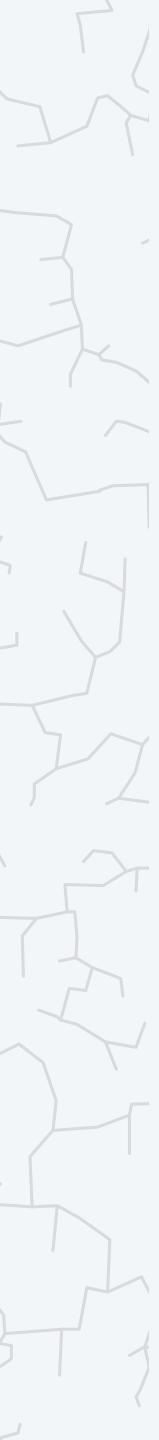
► context

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

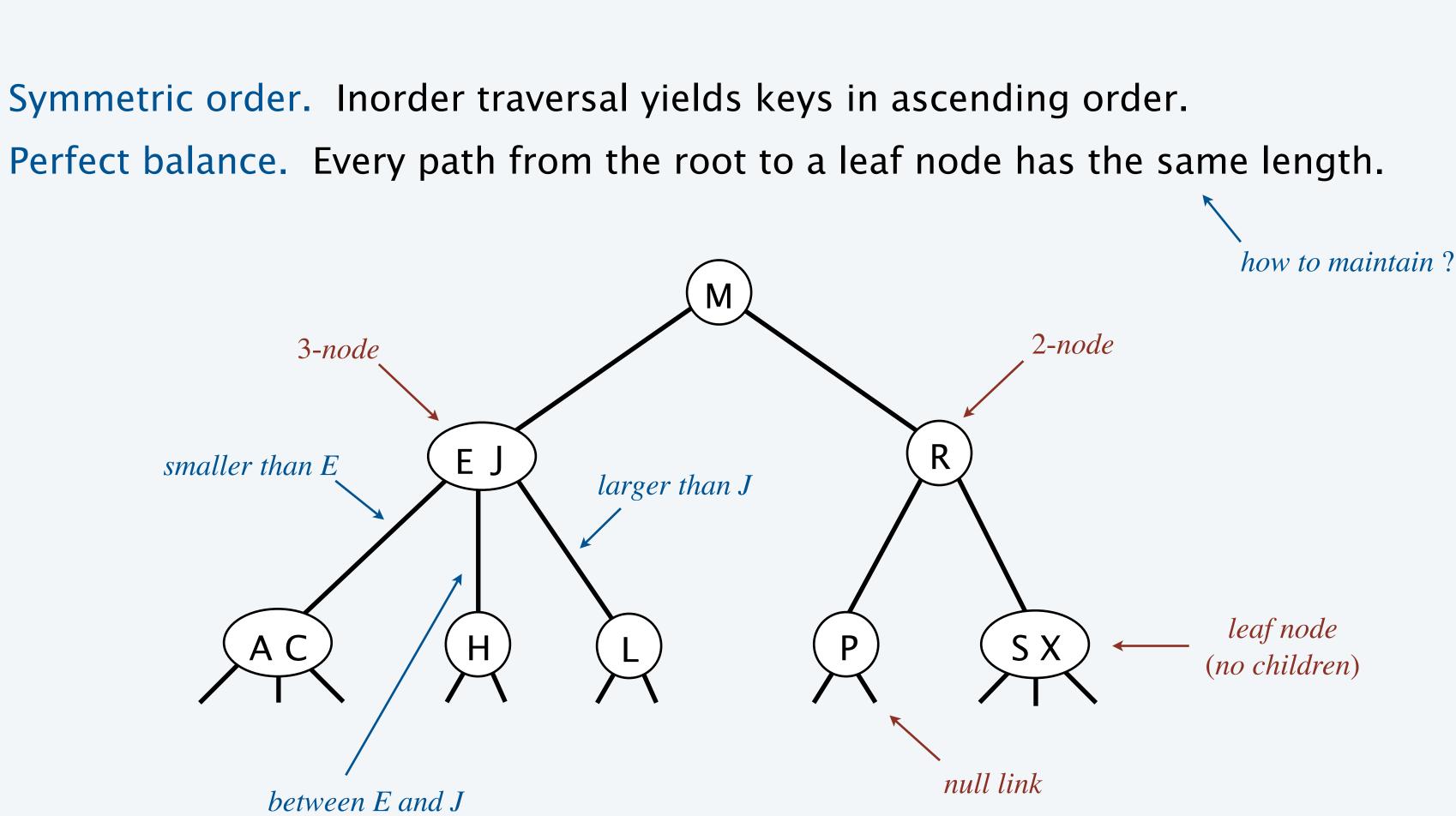
https://algs4.cs.princeton.edu

2-3 search trees
 red-black BSTs (representation)
 red-black BSTs (operations)



Each node contains either 1 or 2 keys.

- 2–node: one key, two children.
- 3-node: two keys, three children.

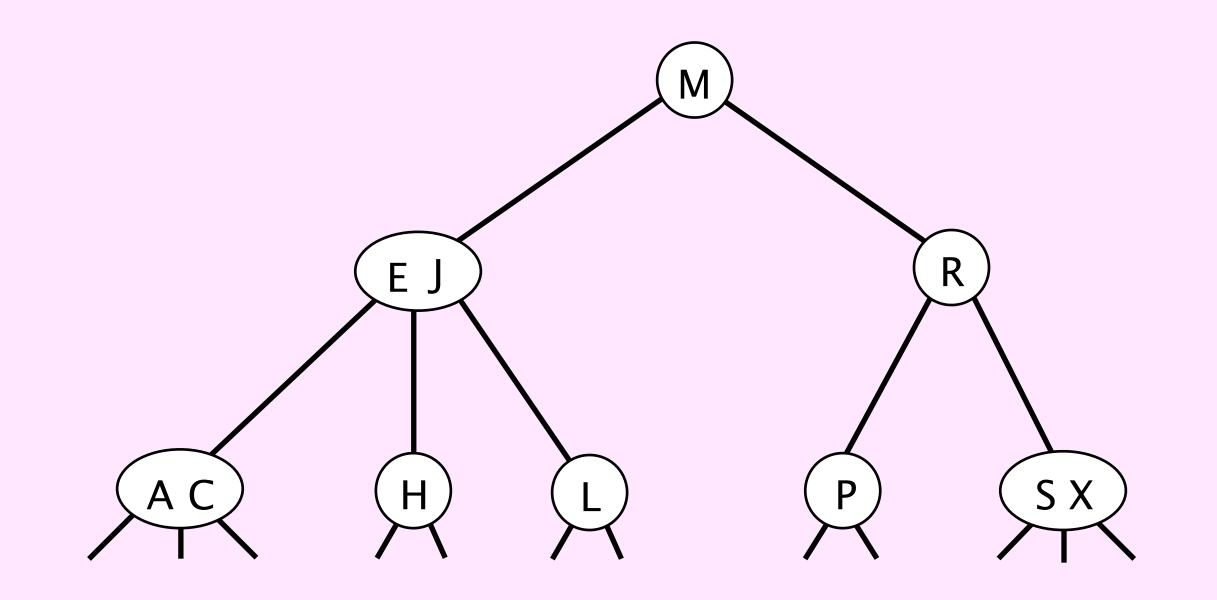


2–3 tree demo

Search.

- Compare search key against key(s) in node.
- Find interval containing search key.
- Follow associated link (recursively).

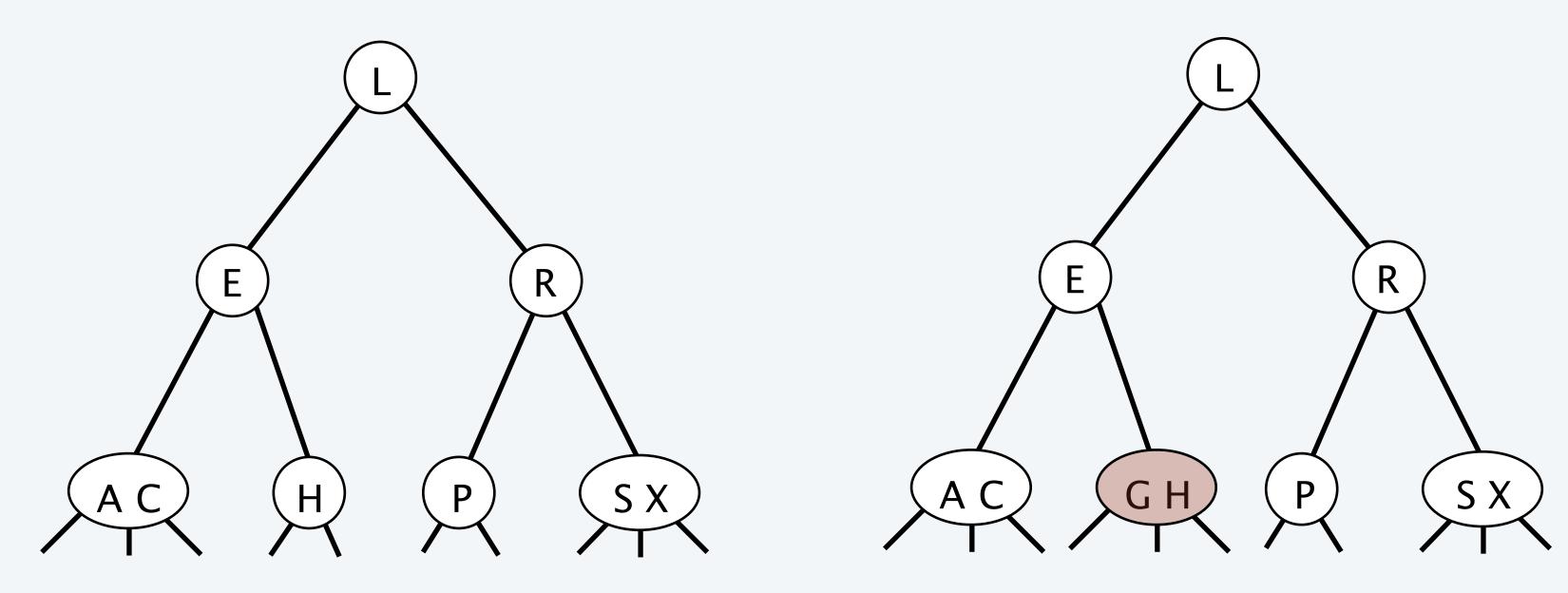
search for H

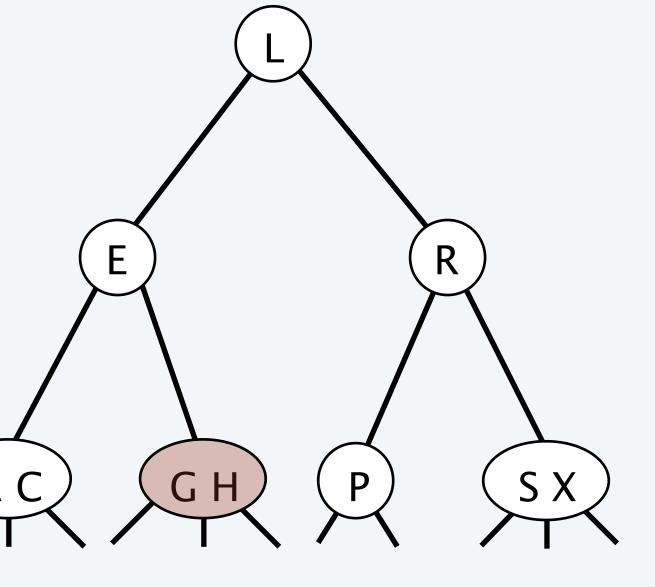


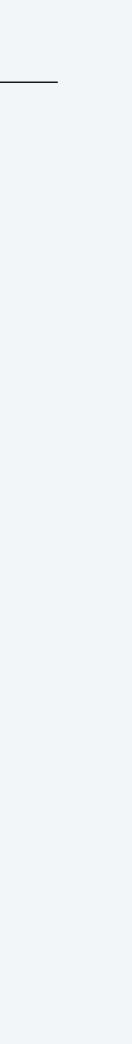
2-3 tree: insertion

Insertion into a 2-node at bottom.

• Add new key to 2-node to create a 3-node.



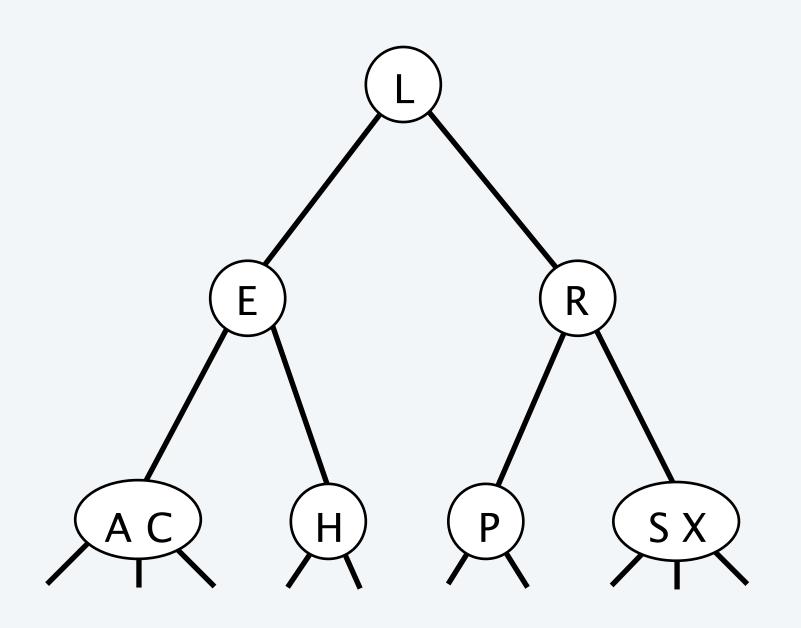


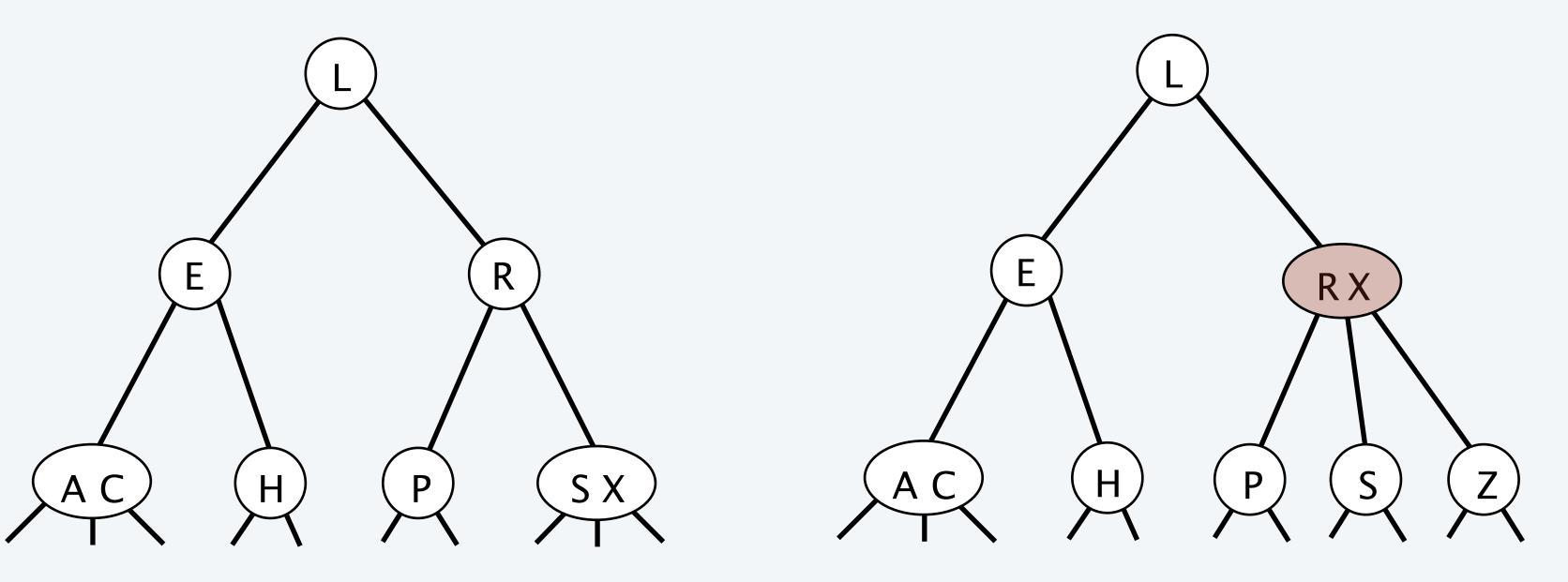


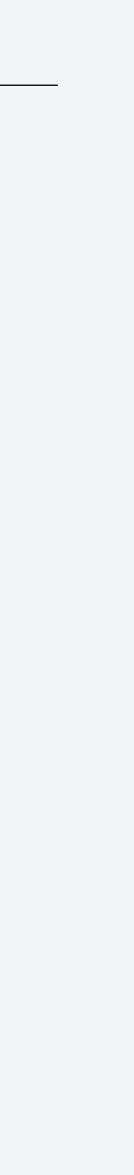
Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert Z



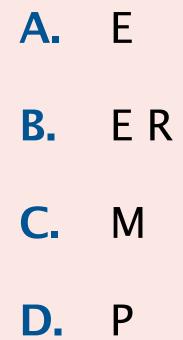


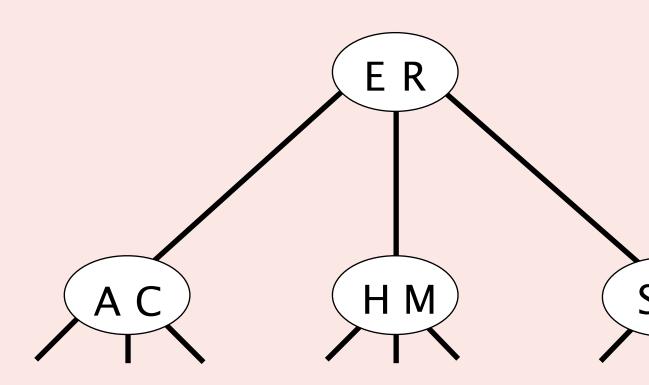


7

Balanced search trees: poll 1

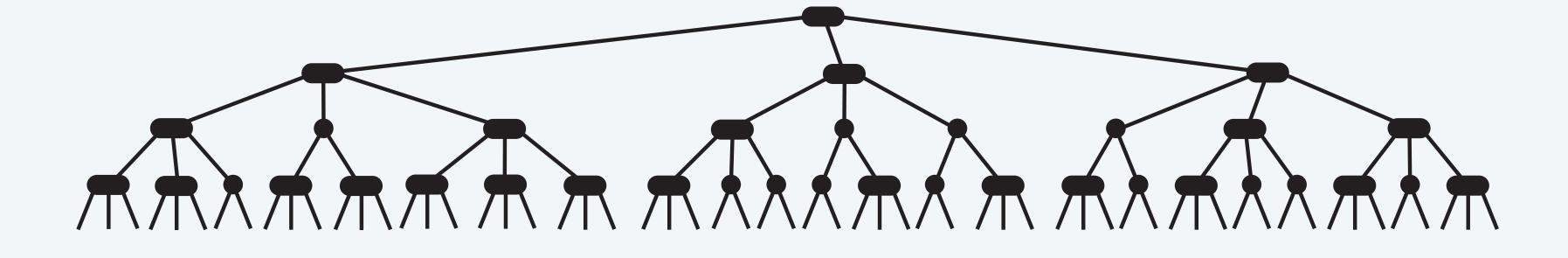
Suppose that you insert P into the following 2-3 tree. What will be the root of the resulting 2-3 tree?





2-3 tree: performance

Perfect balance. Every path from the root to a leaf node has the same length.



Key property. The height of a 2–3 tree containing *n* keys is $\Theta(\log n)$.

- Min: $\sim \log_3 n \approx 0.631 \log_2 n$. [all 3-nodes]
- Max: $\sim \log_2 n$. [all 2-nodes]
- Between 18 and 30 for n = 1 billion keys.

Bottom line. Search and insert take $\Theta(\log n)$ time in the worst case.

ST implementations: summary

implementation	worst case			ordered	key	
	search	insert	delete	ops?	interface	emoji
sequential search (unordered list)	п	п	п		equals()	
binary search (sorted array)	log n	п	п	×	<pre>compareTo()</pre>	
BST	п	п	п	¥	<pre>compareTo()</pre>	
2-3 trees	log n	log n	$\log n$	¥	<pre>compareTo()</pre>	

but hidden constant c is large (*depends upon implementation*)

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Might need two compares to move one level down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

fantasy code

```
public void put(Key key, Value val) {
  Node x = root;
  while (x.getTheCorrectChild(key) != null) {
     x = x.getTheCorrectChildKey();
     if (x.is4Node()) x.split();
   if
           (x.is2Node()) x.make3Node(key, val);
   else if (x.is3Node()) x.make4Node(key, val);
```

Bottom line. Could do it (see COS 326!), but there's a better way.

3.3 BALANCED SEARCH TREES

► 2-3 search trees

► context

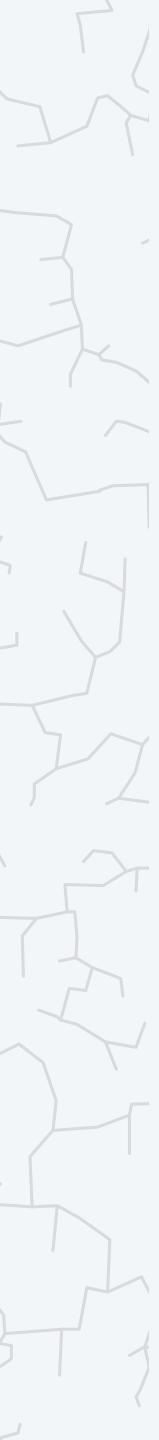
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

red-black BSTs (representation)

red-black BSTs (operations)



How to implement 2-3 trees as binary search trees?

Challenge. How to represent a 3 node?

Approach 1. Two BST nodes.

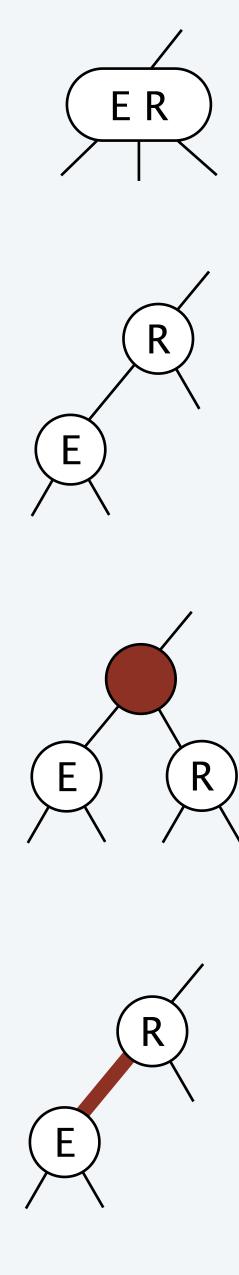
- No way to tell a 3-node from two 2-nodes.
- Can't (uniquely) map from BST back to 2-3 tree.

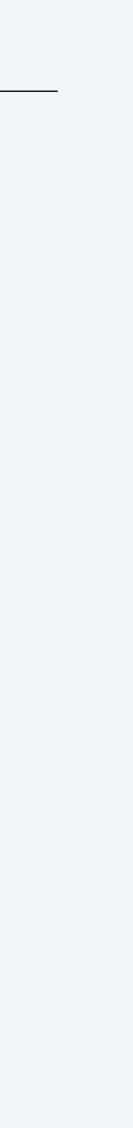
Approach 2. Two BST nodes, plus red "glue" node.

- Wastes space for extra node.
- Messy code.

Approach 3. Two BST nodes, with red "glue" link.

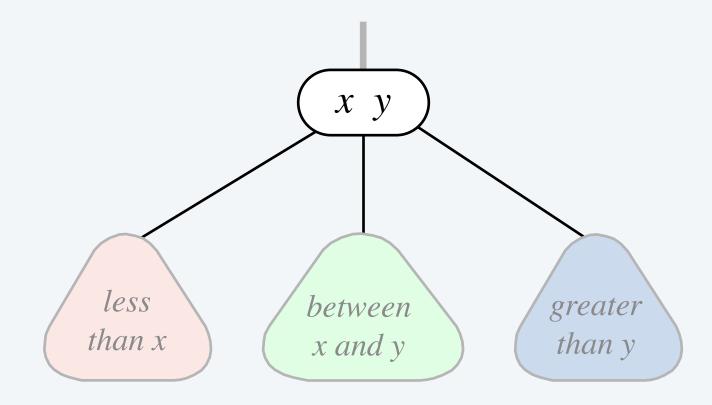
- Widely used in practice.
- Arbitrary restriction: red links lean left.





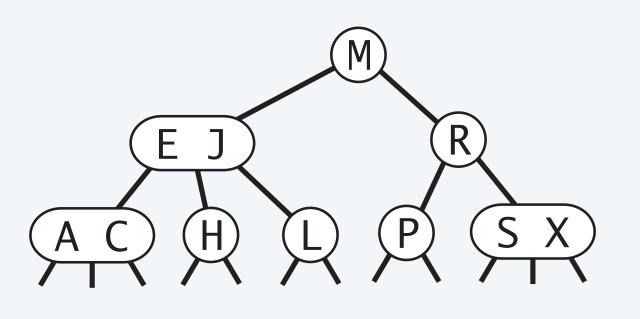
Left-leaning red-black BSTs

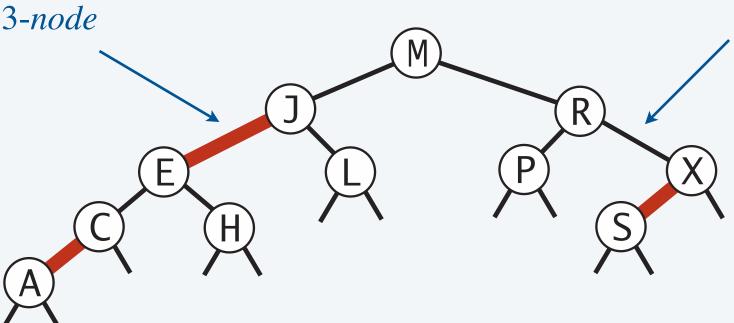
- 1. Represent 2–3 tree as a BST.
- 2. Use "internal" left-leaning red links as "glue" for 3-nodes.

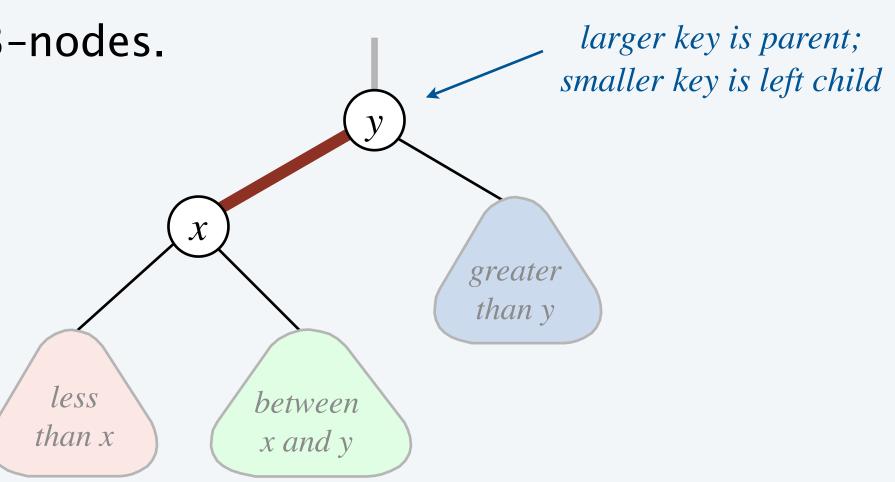


3-node in a 2-3 tree

red link "glues" the two BST nodes that correspond to a 3-node







two nodes in the corresponding red-black BST

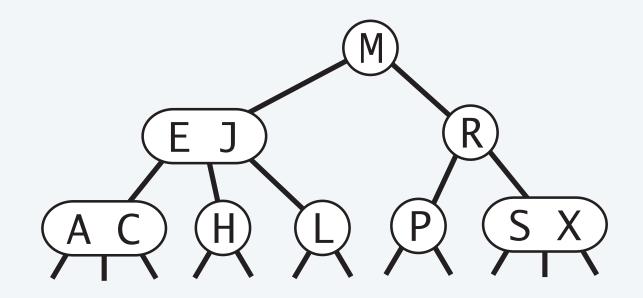
black links are the same as in 2–3 tree

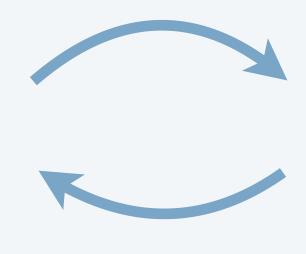
corresponding red-black BST

²⁻³ tree

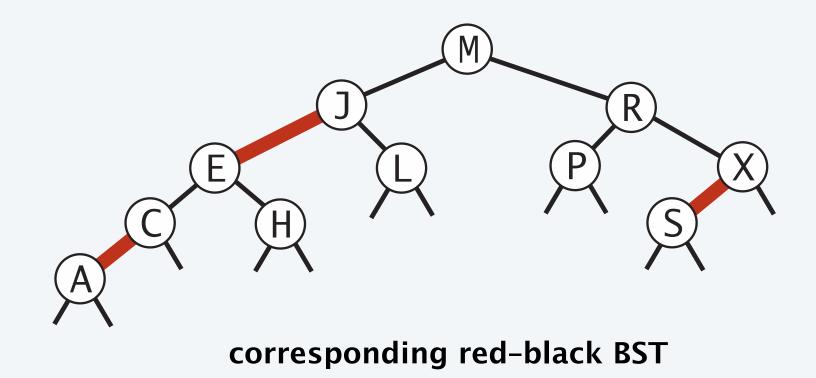
Left-leaning red-black BSTs

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.



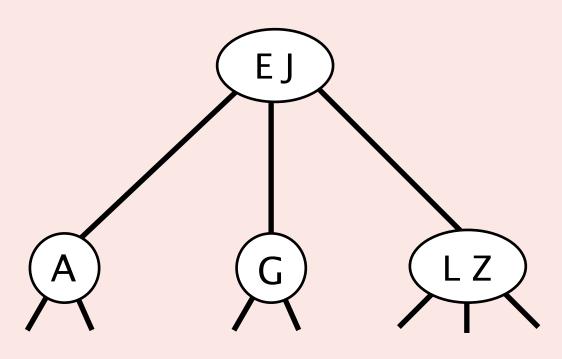


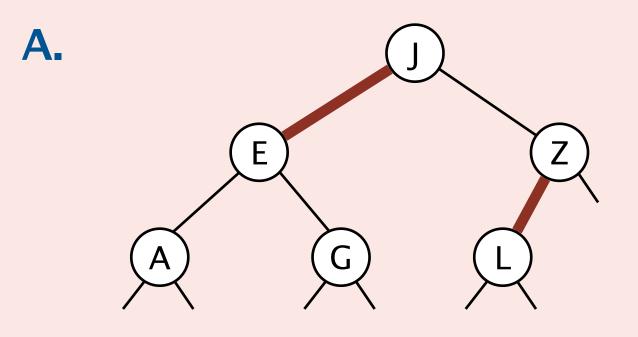
2-3 tree



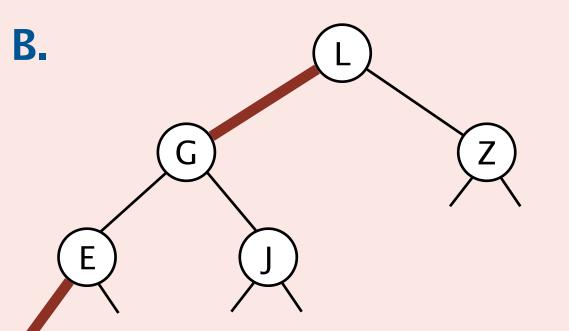
Balanced search trees: poll 3

Which LLRB tree corresponds to the following 2–3 tree?





- Both A and B. С.
- **D.** Neither A nor B.

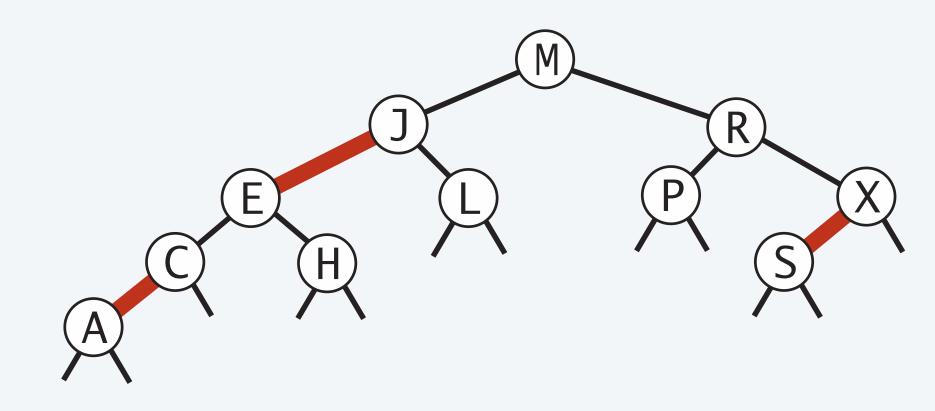


An equivalent definition of LLRB trees (without reference to 2-3 trees)

binary tree, symmetric order

Def. A red-black BST is a BST such that:

- No node has two red links connected to it.
- Red links lean left.
- Every path from root to a leaf node has the same number of black links. ---- perfect black balance



color invariants

black height

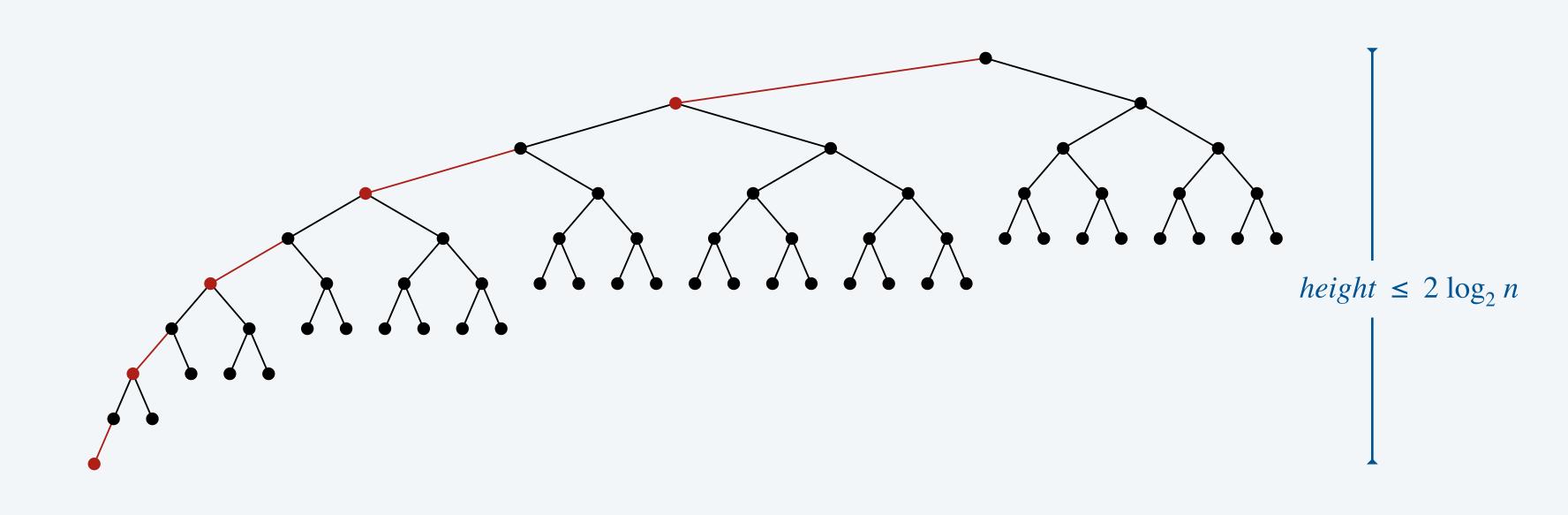
Proposition. Height of LLRB tree is $\leq 2 \log_2 n$. Pf.

- Black height = height of corresponding 2-3 tree $\leq \log_2 n$.
- Never two red links in a row.

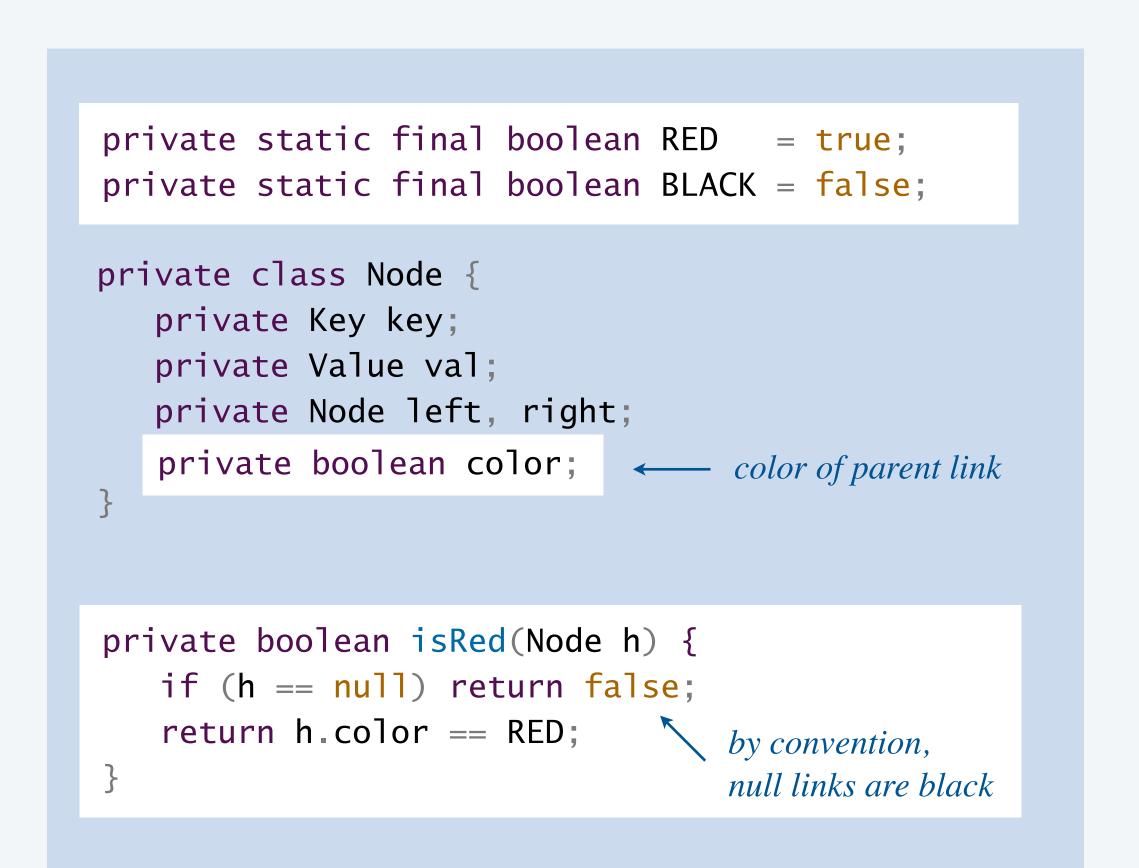
 \implies height of LLRB tree $\leq (2 \times black height) + 1$

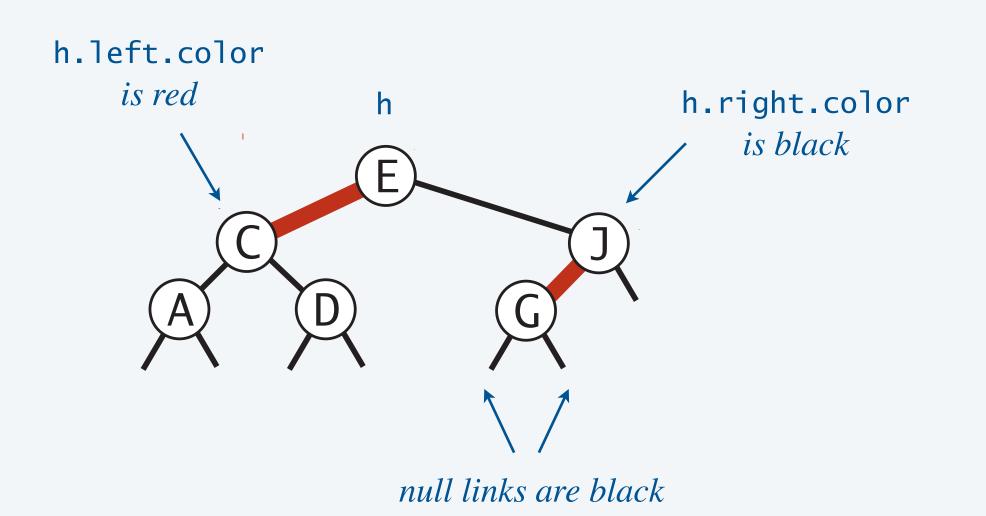
 $\leq 2 \log_2 n + 1.$

• [A more careful argument shows height $\leq 2 \log_2 n$.]



Each node (except root) is pointed to by precisely one link (from its parent) \implies can encode color of links in child nodes.





The red-black tree song (by Sean Sandys)

3.3 BALANCED SEARCH TREES

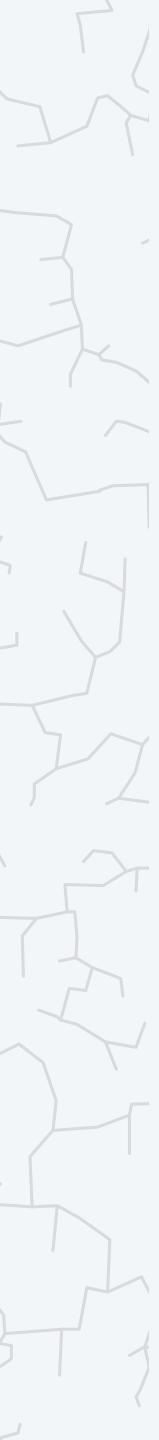
Algorithms

Robert Sedgewick | Kevin Wayne

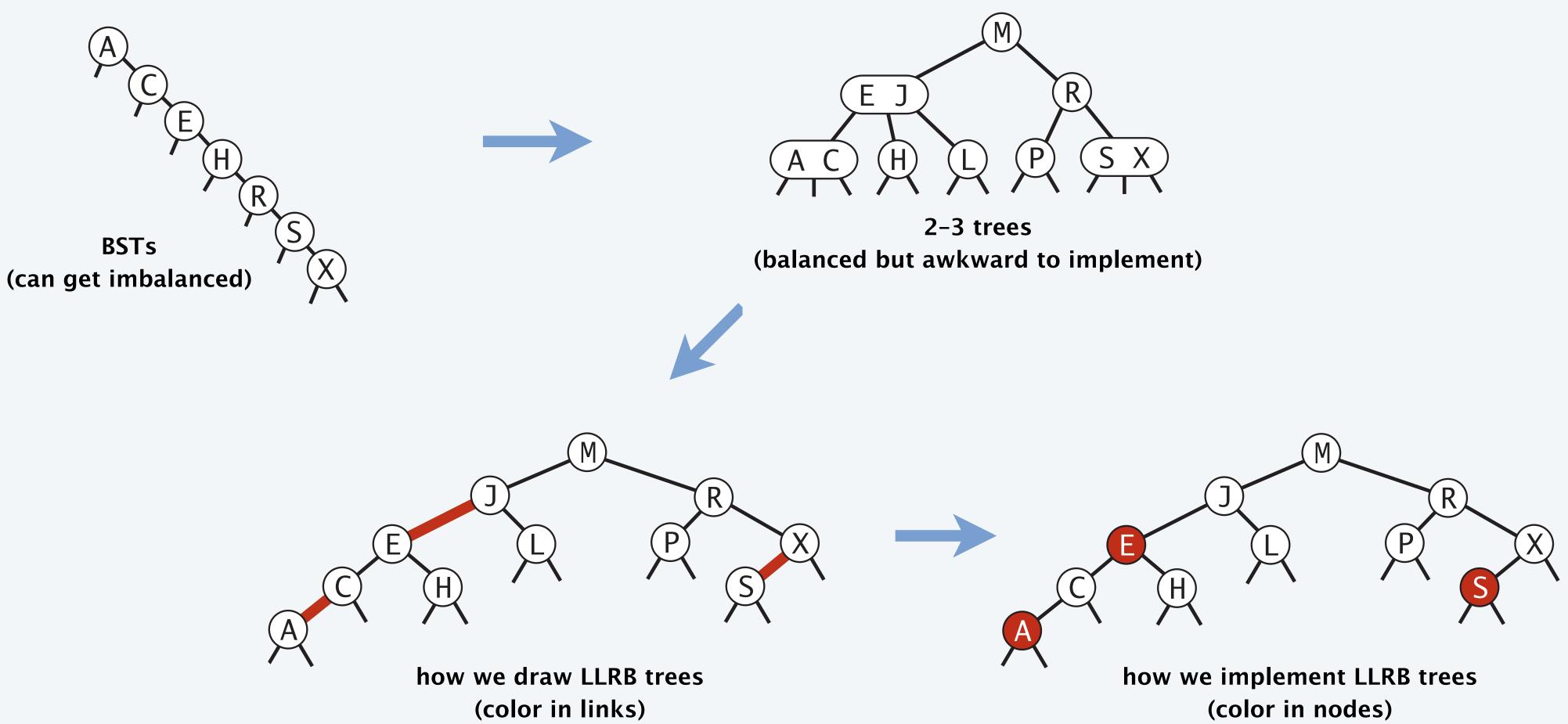
https://algs4.cs.princeton.edu

- > 2-3 search trees
- red-black BSTs (representation)
- red-black BSTs (operations)

► context



Review: the road to LLRB trees

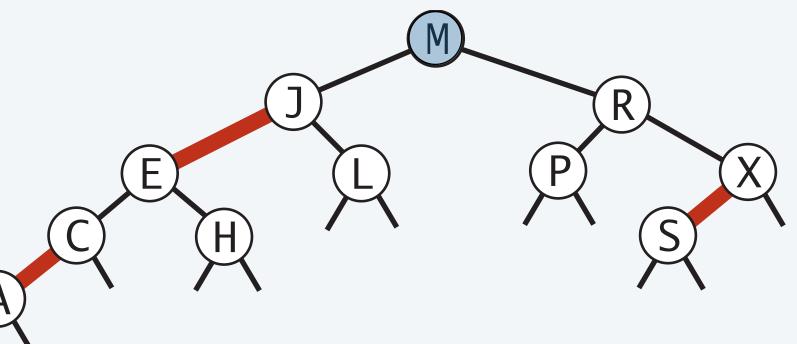


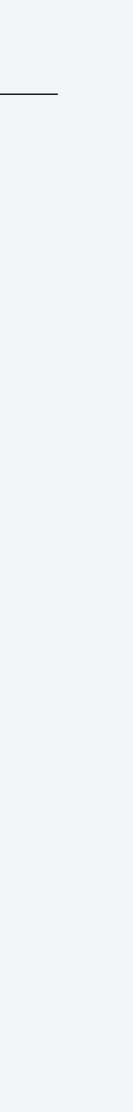
Observation. Red-black BSTs are BSTs \implies search is the same as for BSTs (ignore color).

```
public Value get(Key key) {
  Node x = root;
  while (x != null) {
     int cmp = key.compareTo(x.key);
     if
         (cmp < 0) x = x.left;
     else if (cmp > 0) x = x.right;
     else return x.val;
   return null;
```

Remark. Many other operations (iteration, floor, rank, selection) are also identical.

but runs faster *(because of better balance)*





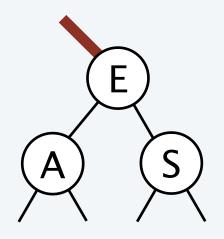
Insertion into a LLRB tree: overview

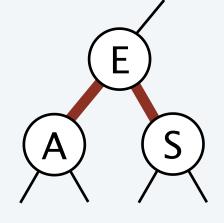
Basic strategy. Maintain 1–1 correspondence with 2–3 trees.

During internal operations, maintain:

- Symmetric order.
- Perfect black balance.
- [but not necessarily color invariants]

Example violations of color invariants:



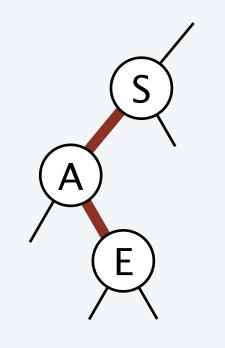


right-leaning red link

two red children (a temporary 4-node)

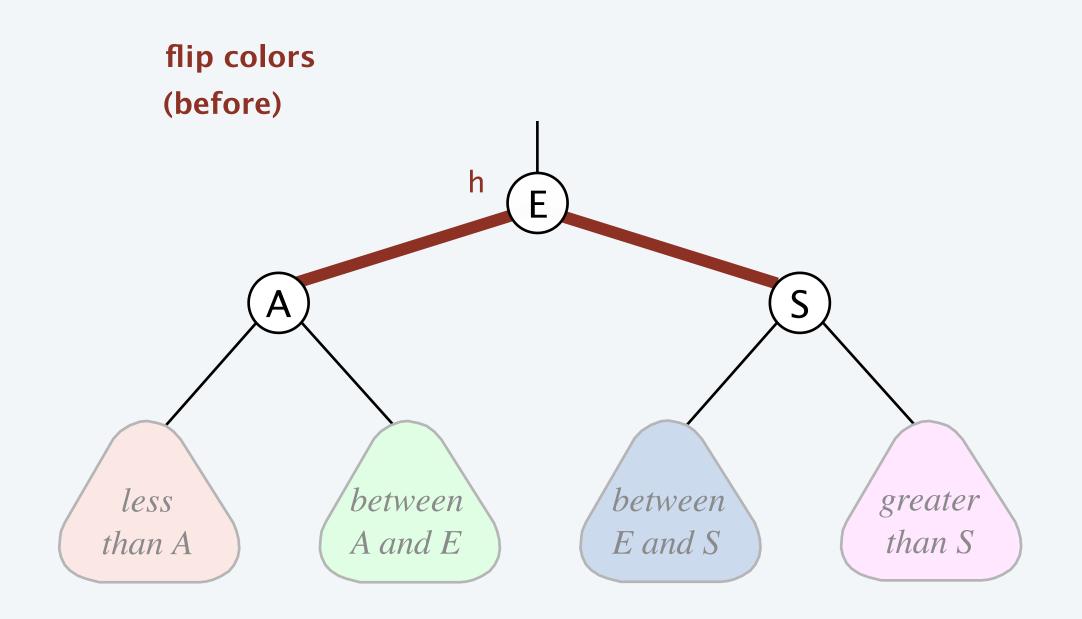
left-left red (a temporary 4-node)

To restore color invariants: perform color flips and rotations.



left-right red (a temporary 4-node)

Color flip. Recolor to split a (temporary) 4-node.

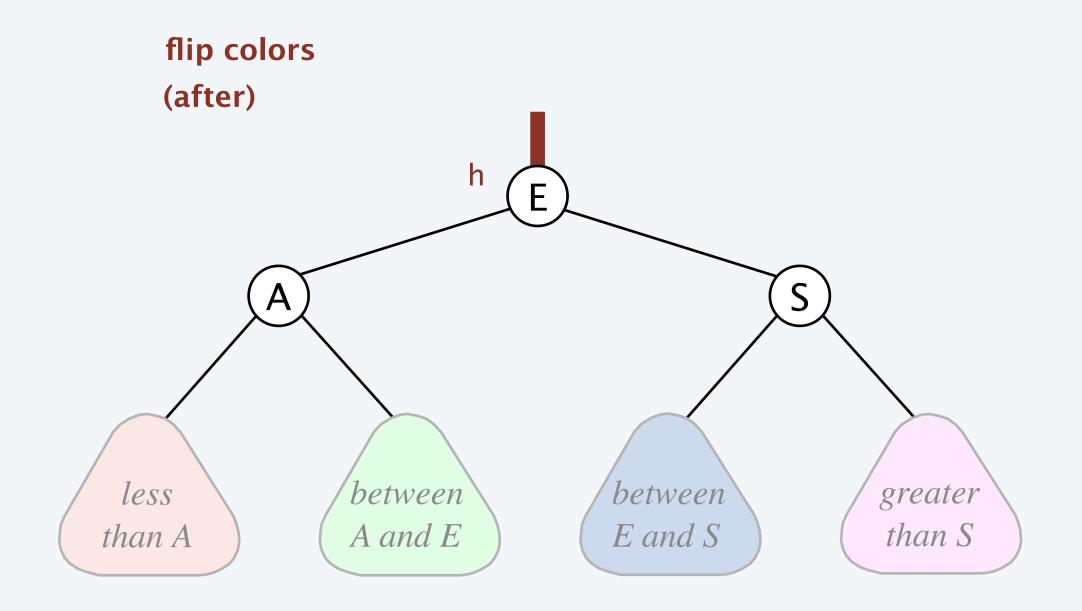


Invariants. Maintains symmetric order and perfect black balance.

```
private void flipColors(Node h) {
```

```
assert !isRed(h);
assert isRed(h.left);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;
```

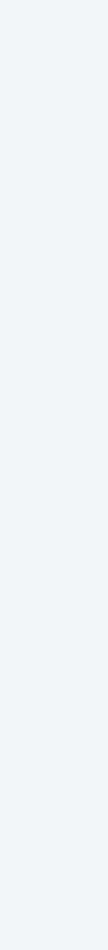
Color flip. Recolor to split a (temporary) 4-node.



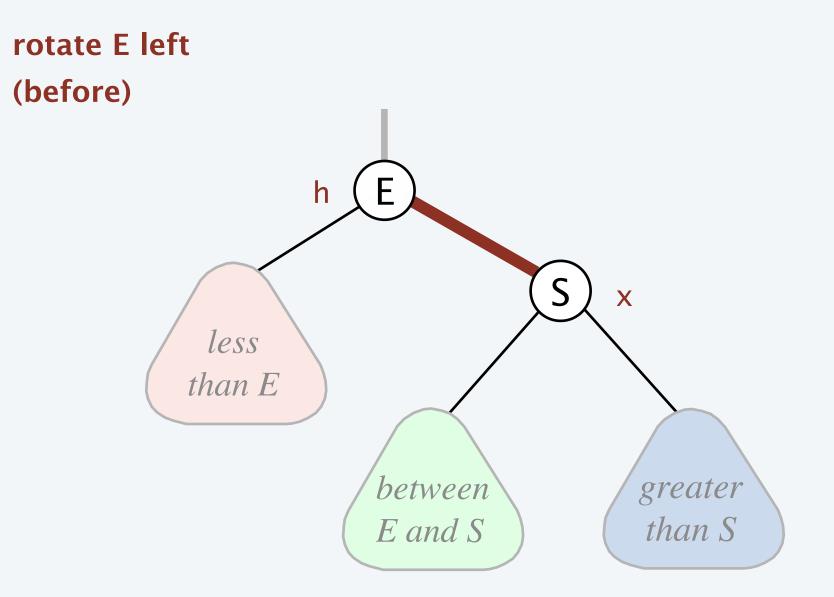
Invariants. Maintains symmetric order and perfect black balance.

```
private void flipColors(Node h) {
```

```
assert !isRed(h);
assert isRed(h.left);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;
```



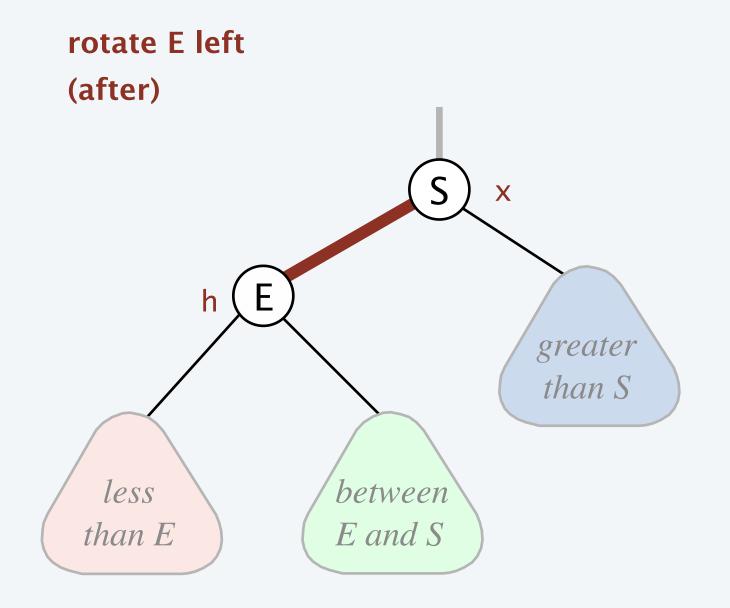
Left rotation. Orient a (temporarily) right-leaning red link to lean left.



Invariants. Maintains symmetric order and perfect black balance.

```
private Node rotateLeft(Node h) {
  assert !isRed(h.left);
  assert isRed(h.right);
  Node x = h.right;
  h.right = x.left;
  x.left = h;
  x.color = h.color;
  h.color = RED;
   return x;
```

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

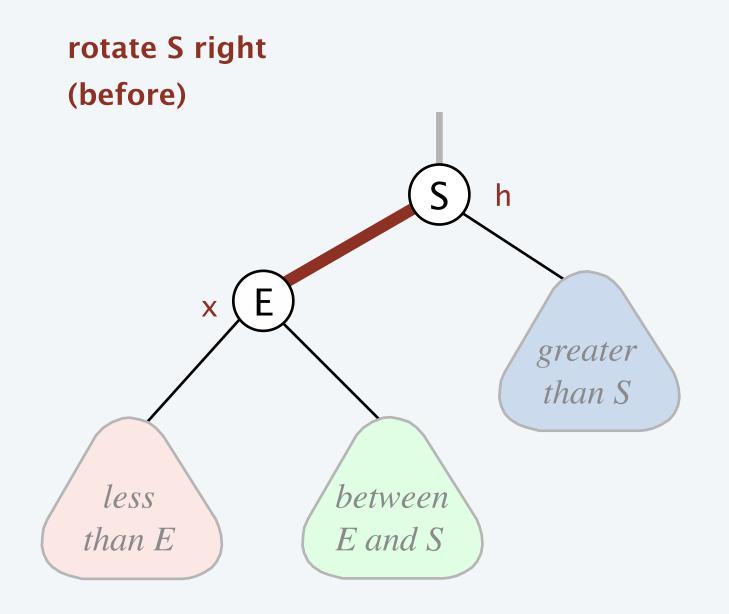


Invariants. Maintains symmetric order and perfect black balance.

```
private Node rotateLeft(Node h) {
  assert !isRed(h.left);
  assert isRed(h.right);
  Node x = h.right;
  h.right = x.left;
  x.left = h;
  x.color = h.color;
  h.color = RED;
   return x;
```

returns root of resulting subtree (typical call: h = rotateLeft(h))

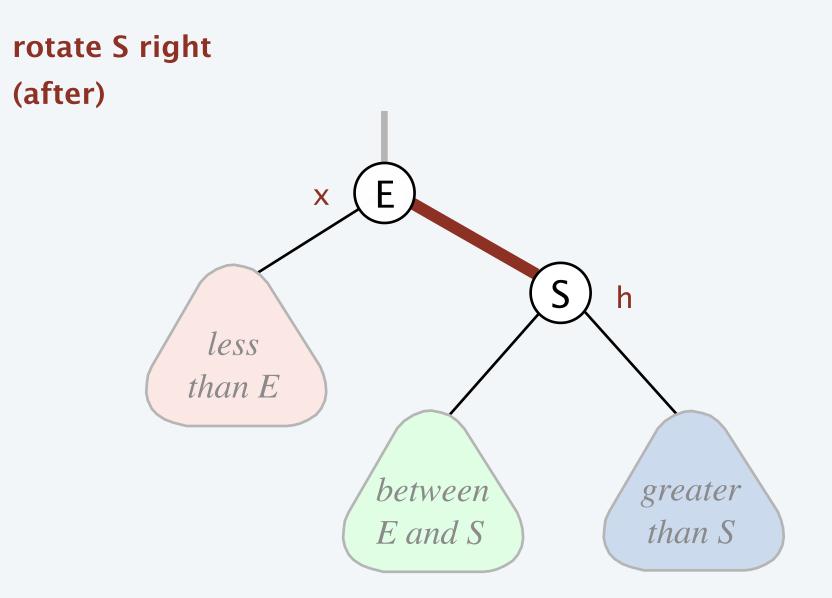
Right rotation. Orient a left-leaning red link to (temporarily) lean right.



Invariants. Maintains symmetric order and perfect black balance.

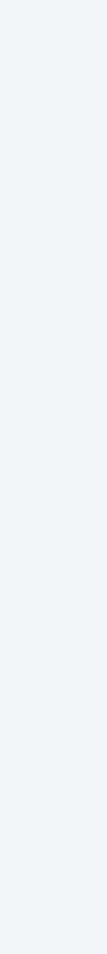
```
private Node rotateRight(Node h) {
  assert isRed(h.left);
  assert !isRed(h.right);
  Node x = h.left;
  h.left = x.right;
  x.right = h;
  x.color = h.color;
  h.color = RED;
   return x;
```


Right rotation. Orient a left-leaning red link to (temporarily) lean right.

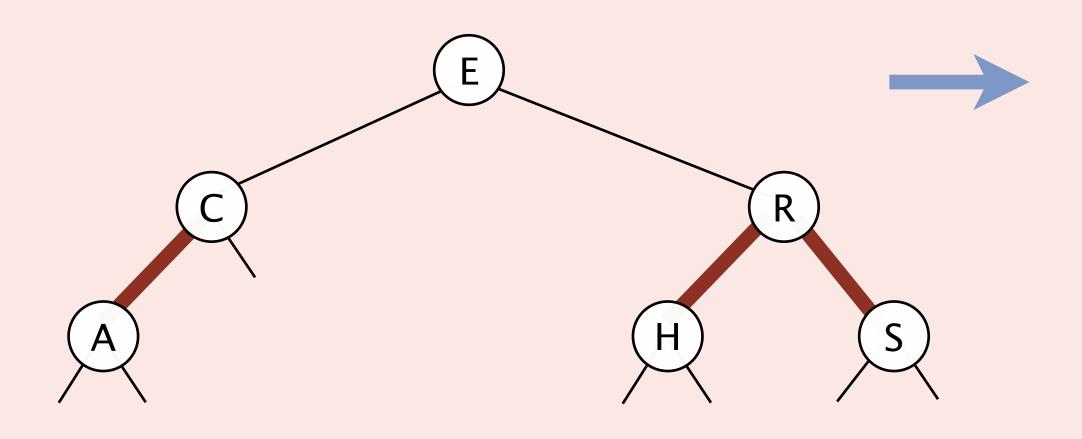


Invariants. Maintains symmetric order and perfect black balance.

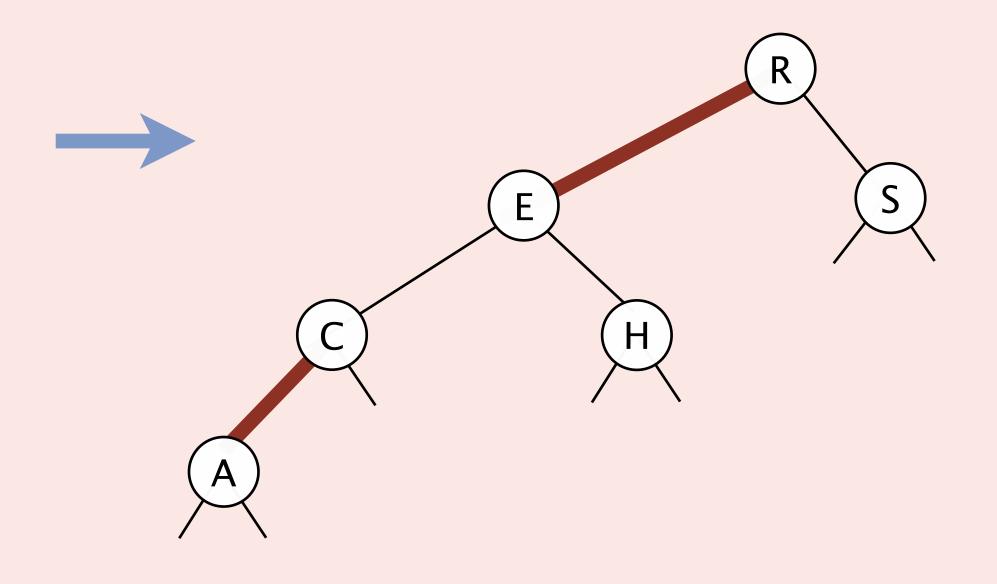
```
private Node rotateRight(Node h) {
  assert isRed(h.left);
  assert !isRed(h.right);
  Node x = h.left;
  h.left = x.right;
  x.right = h;
  x.color = h.color;
  h.color = RED;
   return x;
```



Which sequence of elementary operations transforms the red-black BST at left to the one at right?



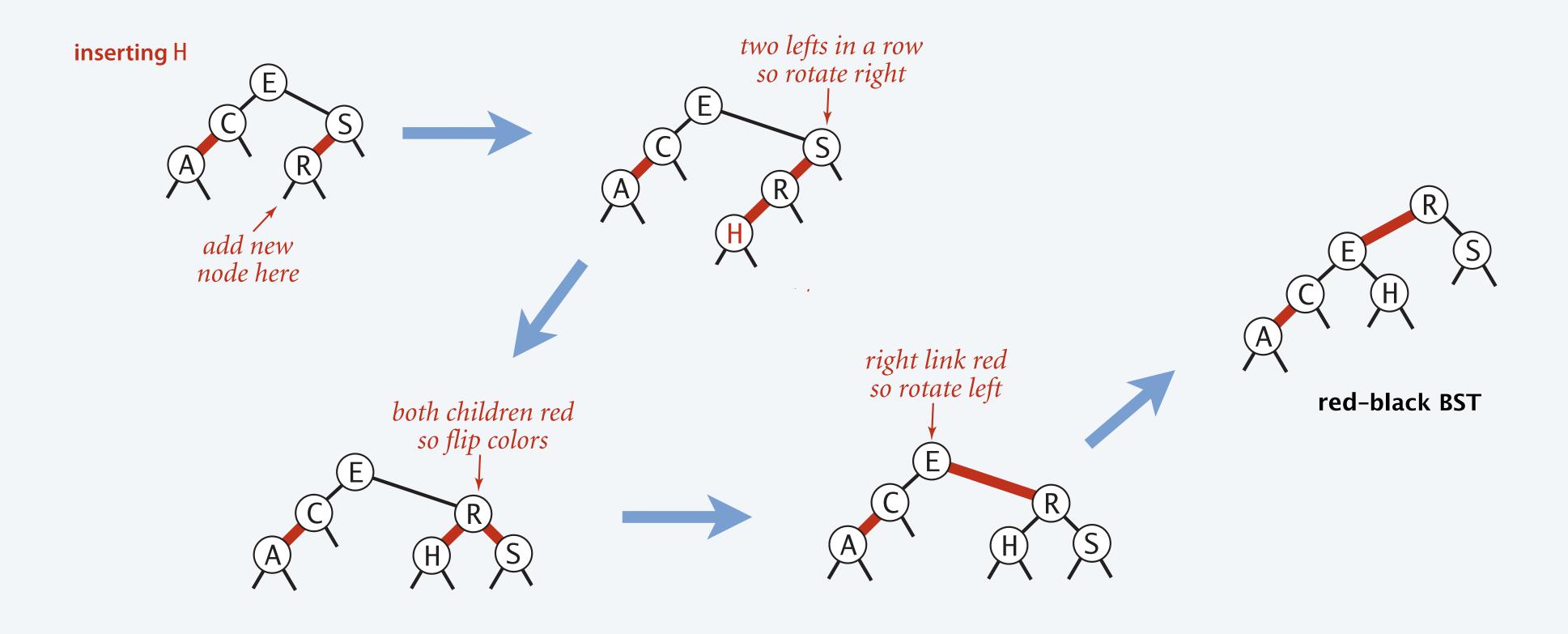
- A. Color flip E; left rotate R.
- **B.** Color flip R; left rotate E.
- **C.** Color flip R; left rotate R.
- **D.** Color flip R; right rotate E.



Insertion into a LLRB tree

- Do standard BST leaf insertion and color new link red. ←
- Repeat up the tree until color invariants restored:
 - two left red links in a row? \Rightarrow rotate right
 - left and right links both red?
 - only right link red?

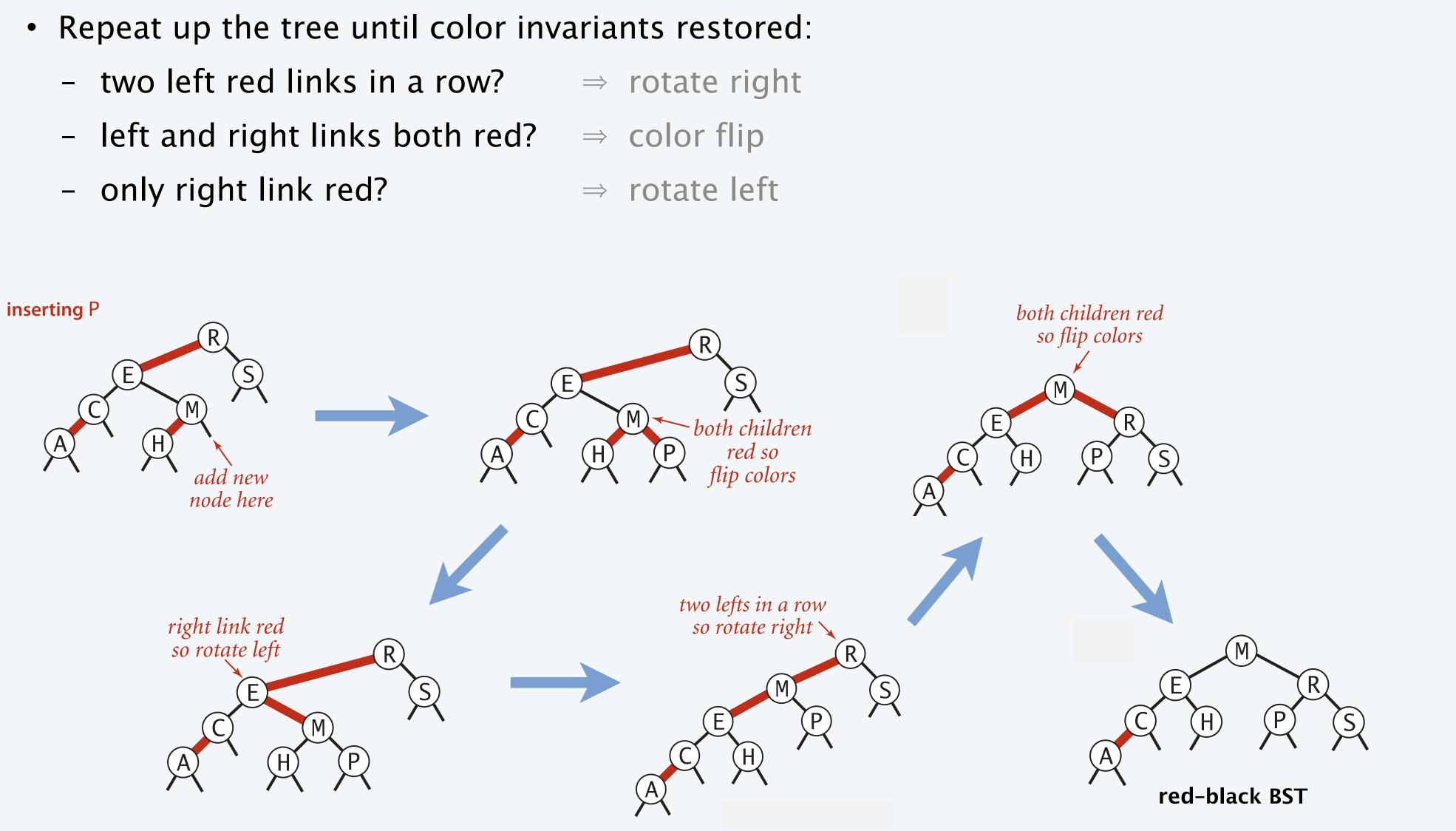
- \Rightarrow color flip
- \Rightarrow rotate left



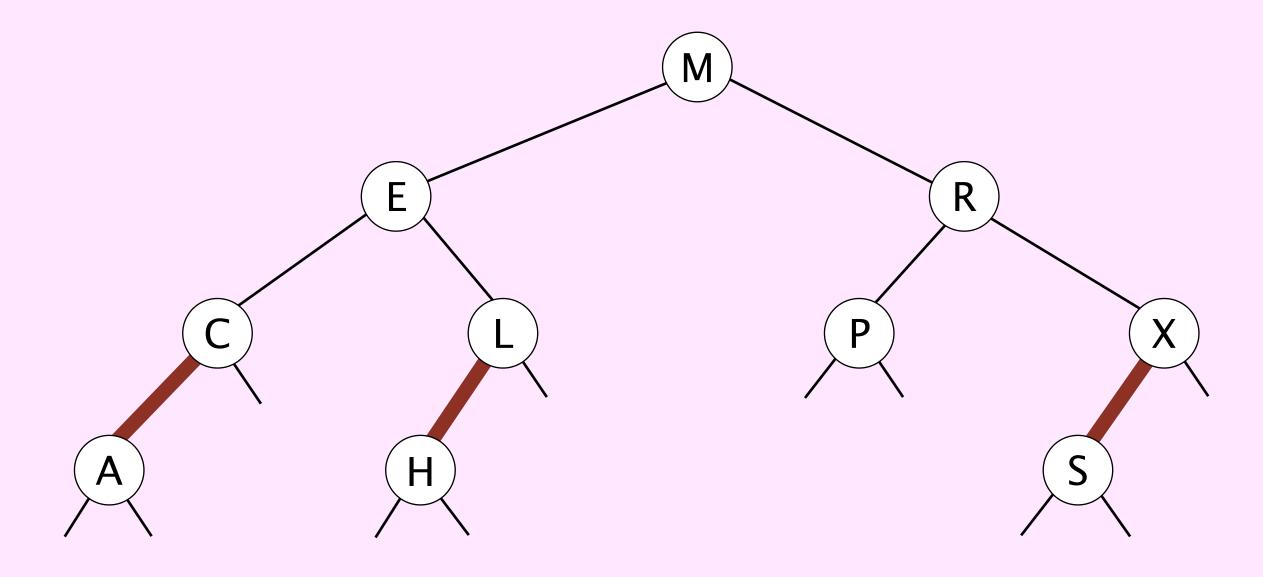
to preserve symmetric order and perfect black balance

Insertion into a LLRB tree

- Do standard BST leaf insertion and color new link red.



Red-black BST construction demo



Insertion into a LLRB tree: Java implementation

- Do standard BST leaf insertion and color new link red.
- Repeat up the tree until color invariants restored:
 - only right link red? \Rightarrow rotate left
 - two left red links in a row? \Rightarrow rotate right
 - left and right links both red? \Rightarrow color flip

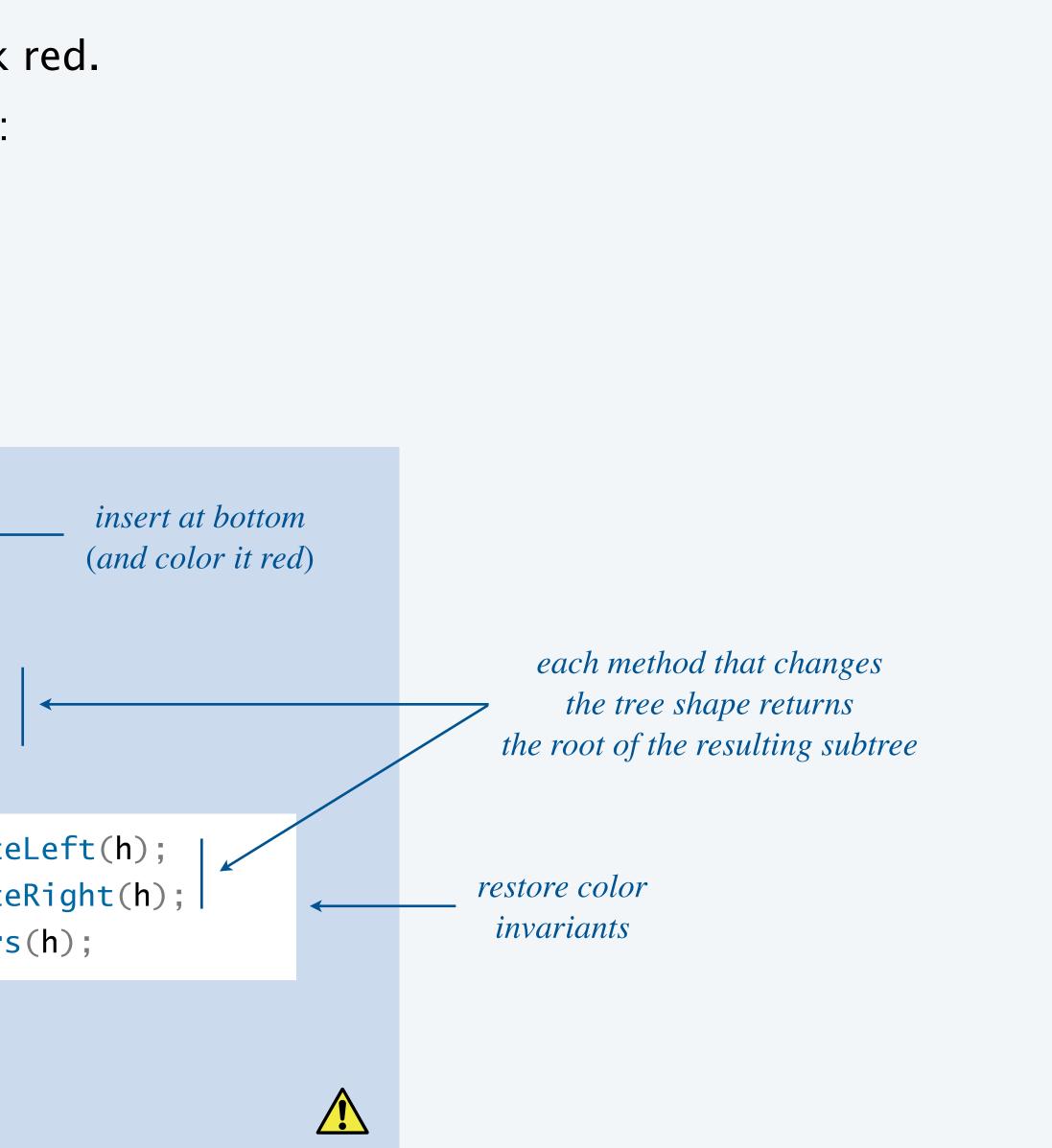
```
private Node put(Node h, Key key, Value val) {
    if (h == null) return new Node(key, val, RED);
```

```
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;
```

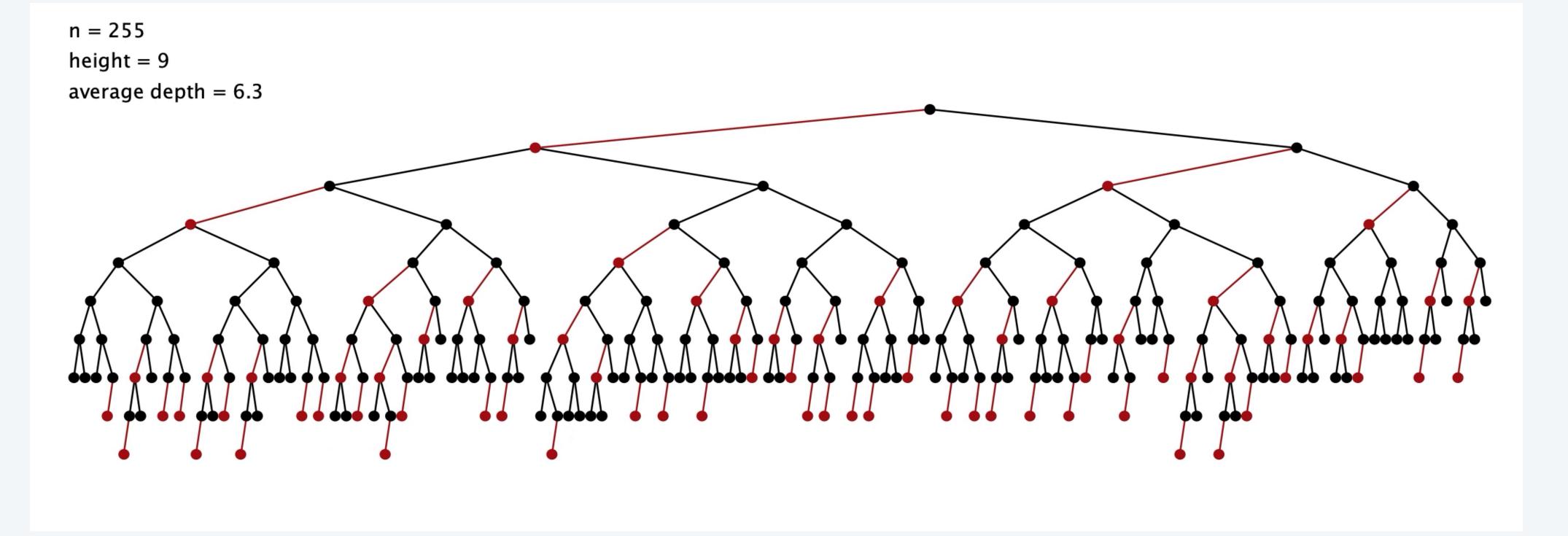
```
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);
```

return h;

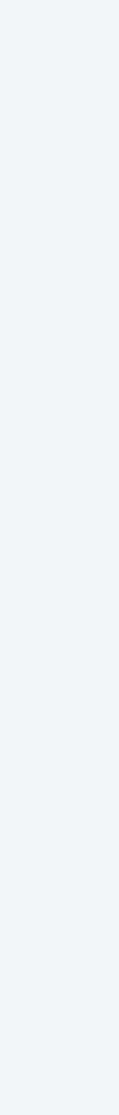
only a few extra lines of code guarantees $\Theta(\log n)$ height



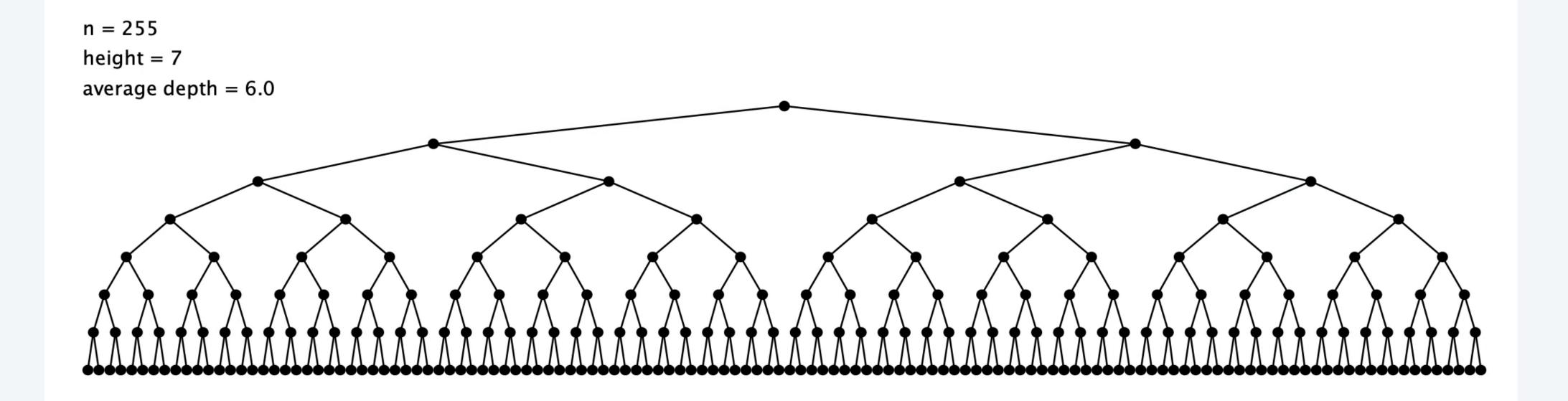
Insertion into a LLRB tree: visualization



255 insertions in random order



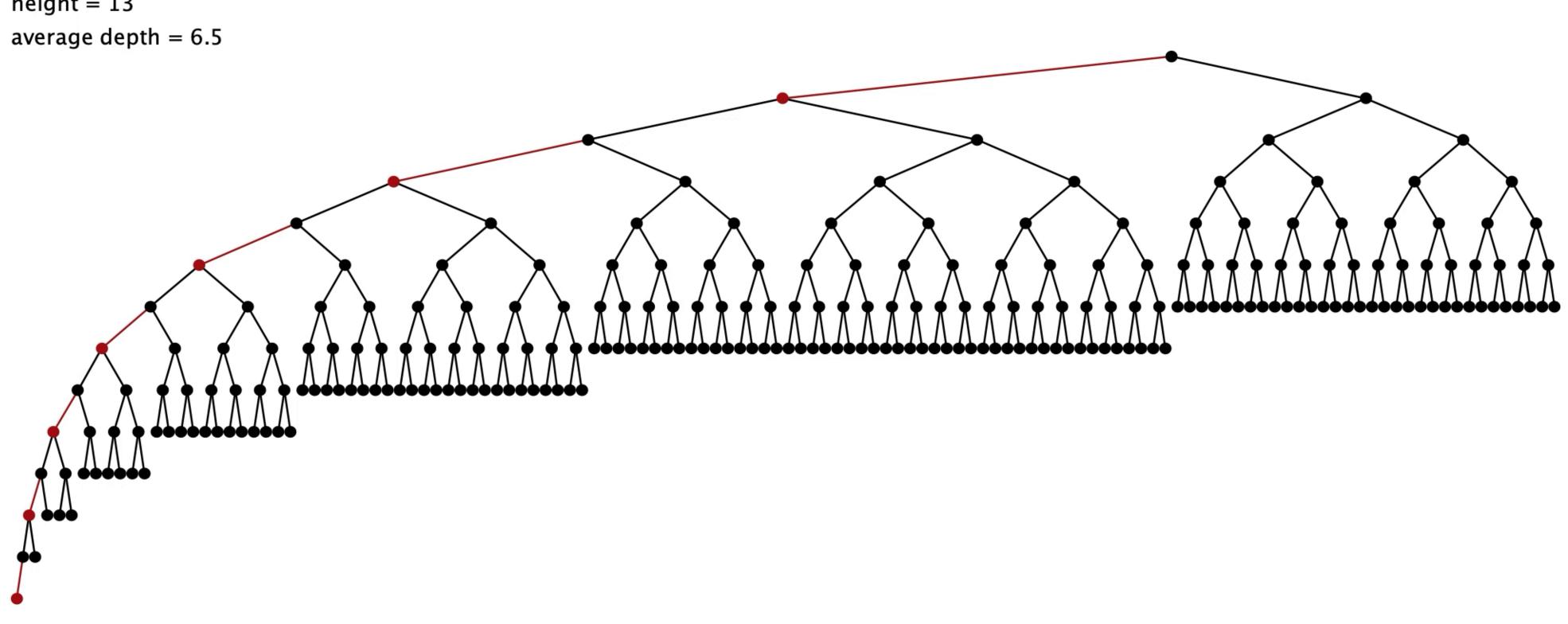
Insertion into a LLRB tree: visualization



255 insertions in ascending order

Insertion into a LLRB tree: visualization

n = 254 height = 13



254 insertions in descending order

ST implementations: summary

implementation	worst case			ordered	key	
	search	insert	delete	ops?	interface	emoji
sequential search (unordered list)	п	п	п		equals()	
binary search (sorted array)	log n	п	п	×	<pre>compareTo()</pre>	
BST	п	п	n	V	<pre>compareTo()</pre>	
2–3 trees	log n	log n	log n	V	<pre>compareTo()</pre>	2
red-black BSTs	log n	log n	$\log n$	✓	<pre>compareTo()</pre>	
hidden constant c is small						

hidden constant c is small ($\leq 2 \log_2 n$ compares)

Algorithms

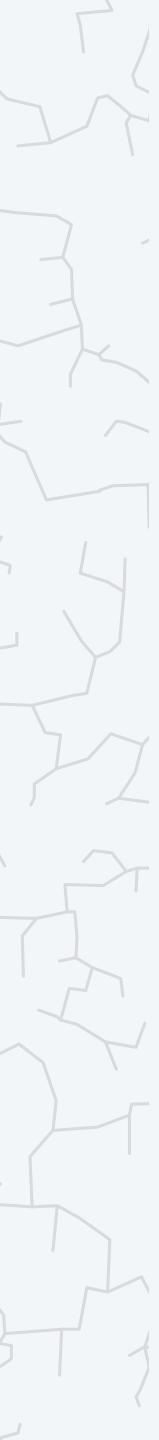
Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

3.3 BALANCED SEARCH TREES

2-3 search trees
 red-black BSTs (representation)
 red-black BSTs (operations)

context

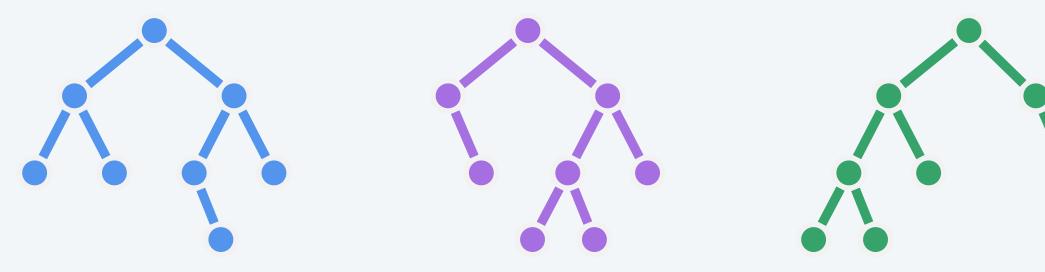


Balanced search trees in the wild

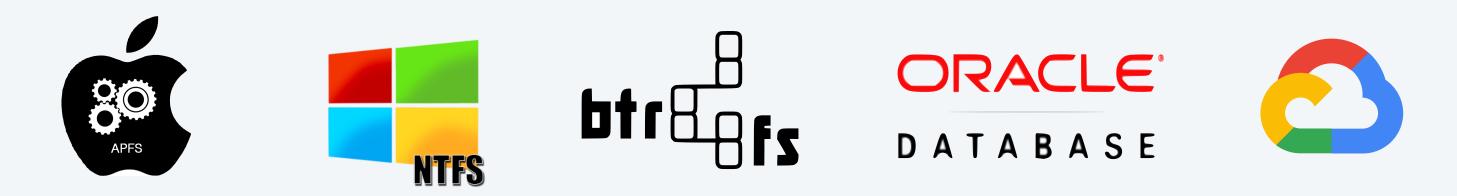
Red-black BSTs are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: std:map, std:set.
- Linux kernel: CFQ I/O scheduler, VMAs, linux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs, rank-balanced BSTs,



B-trees (and cousins) are widely used for file systems and databases.



Industry story 1: red-black BSTs

Telephone company contracted with database provider to build a real-time database to store customer information.

Database implementation.

- Red-black BST.
- Exceeding height limit of 80 triggered error-recovery process.

should support up to 2⁴⁰ keys

Database crashed.

- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

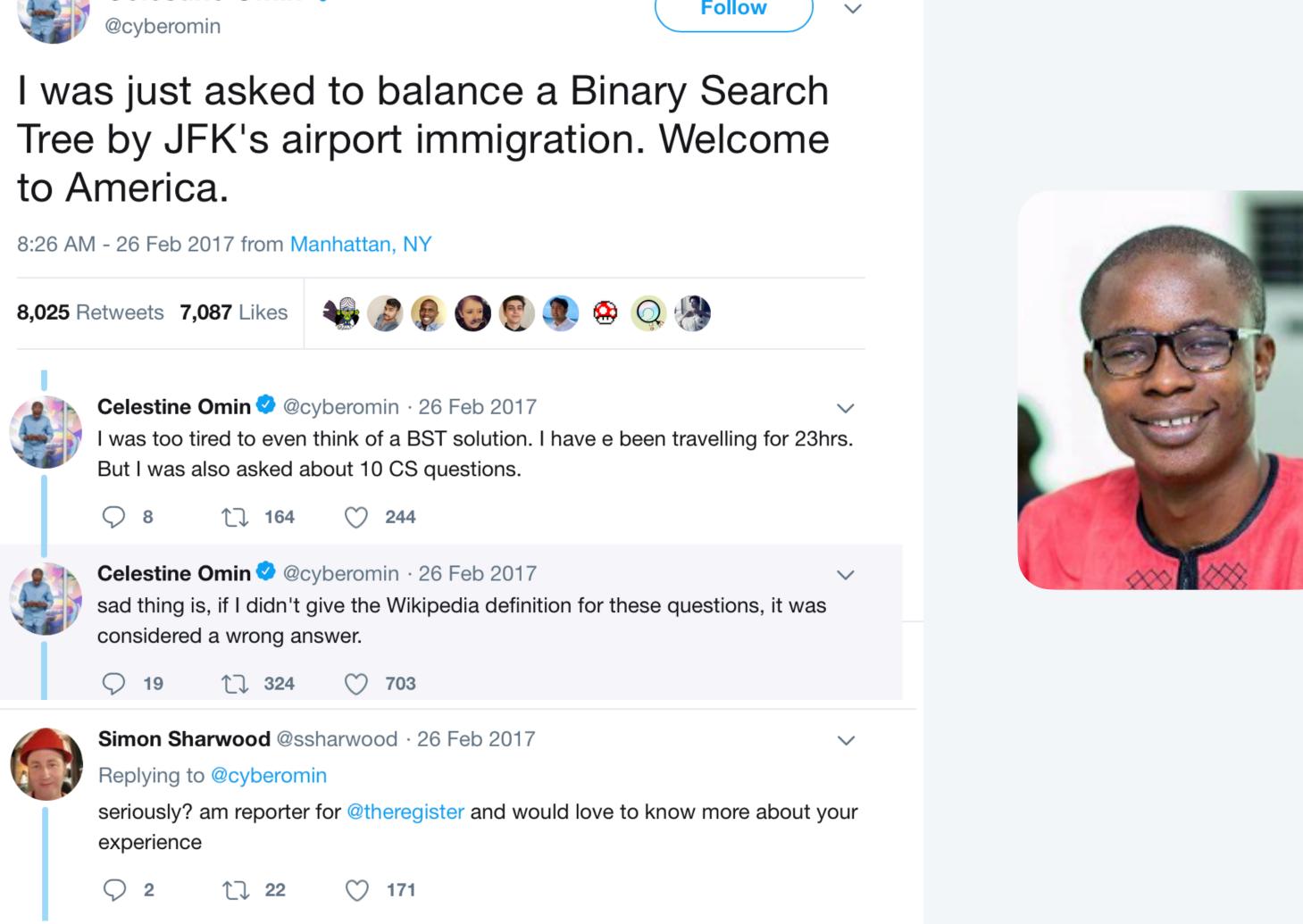
" *If implemented properly, the height of a red–black BST* with *n* keys is at most $2 \log_2 n$." — expert witness

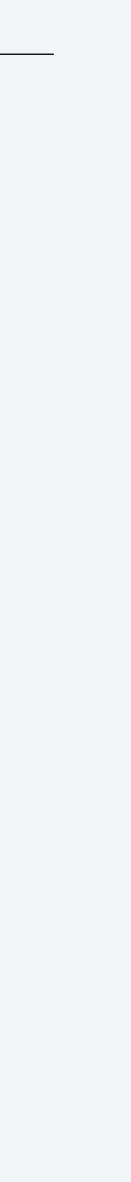
a.	-
4.	-
	-
4.	
4.	-
	-
a.	
	-
	-
	-

Industry story 2: red-black BSTs


```
Celestine Omin 🤣
```


Tree by JFK's airport immigration. Welcome to America.





Credits

media

Technological Wizard

Red–Black Tree Song

Red–Black Tree Song Video

Gavel

Redacted Document

Celestine Omin

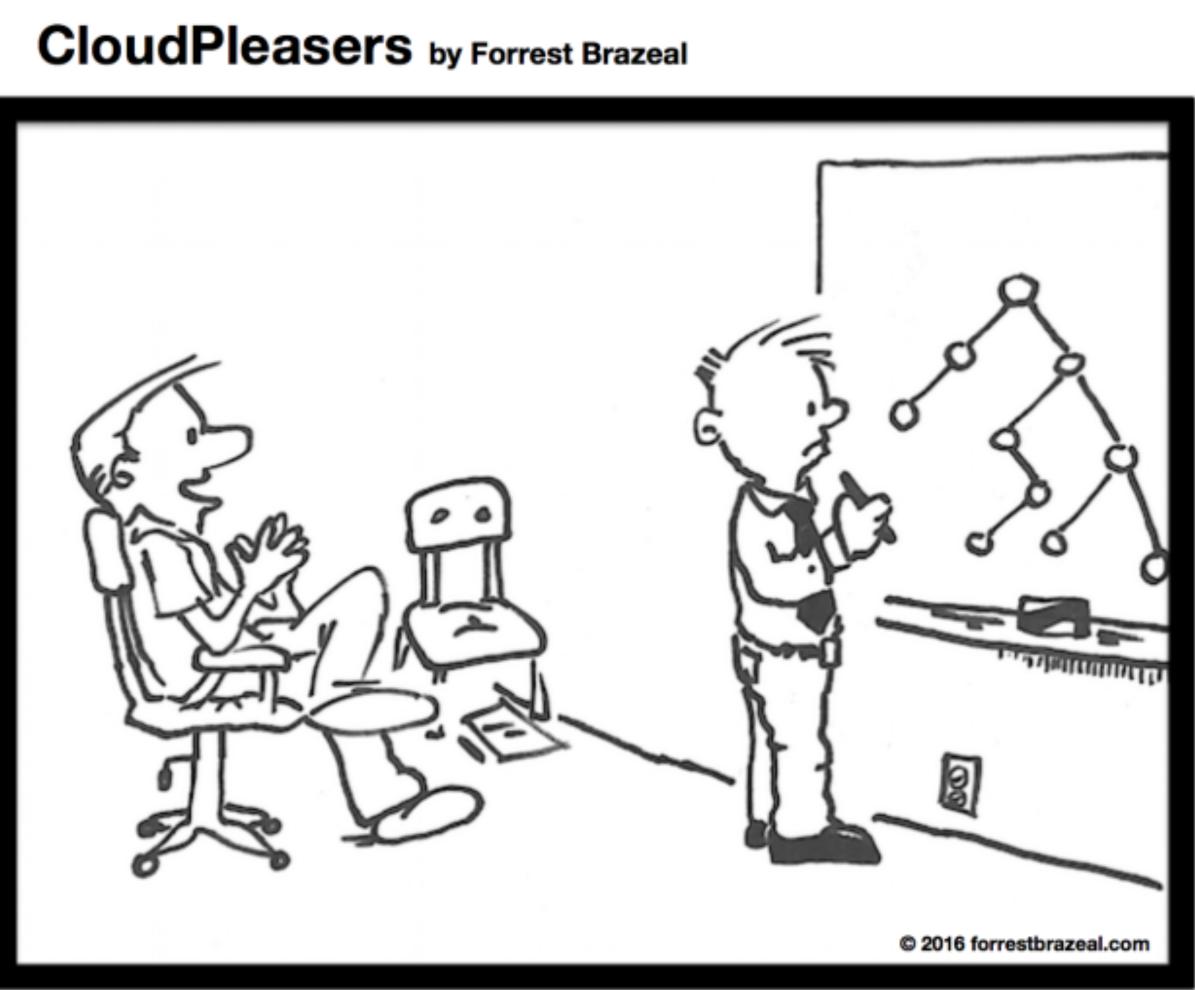
Balancing a BST Interview

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

source	license
Adobe Stock	Education License
<u>Sean Sandys</u>	by author
. Washington CSE Band	
Adobe Stock	Education License
<u>Wikimedia</u>	<u>public domain</u>
Twitter	

Forrest Brazeal

A final thought



"We want our interviewees to solve real-world problems. So while you balance this binary search tree, I'll be changing the requirements, imposing arbitrary deadlines and auditing you for regulatory compliance."