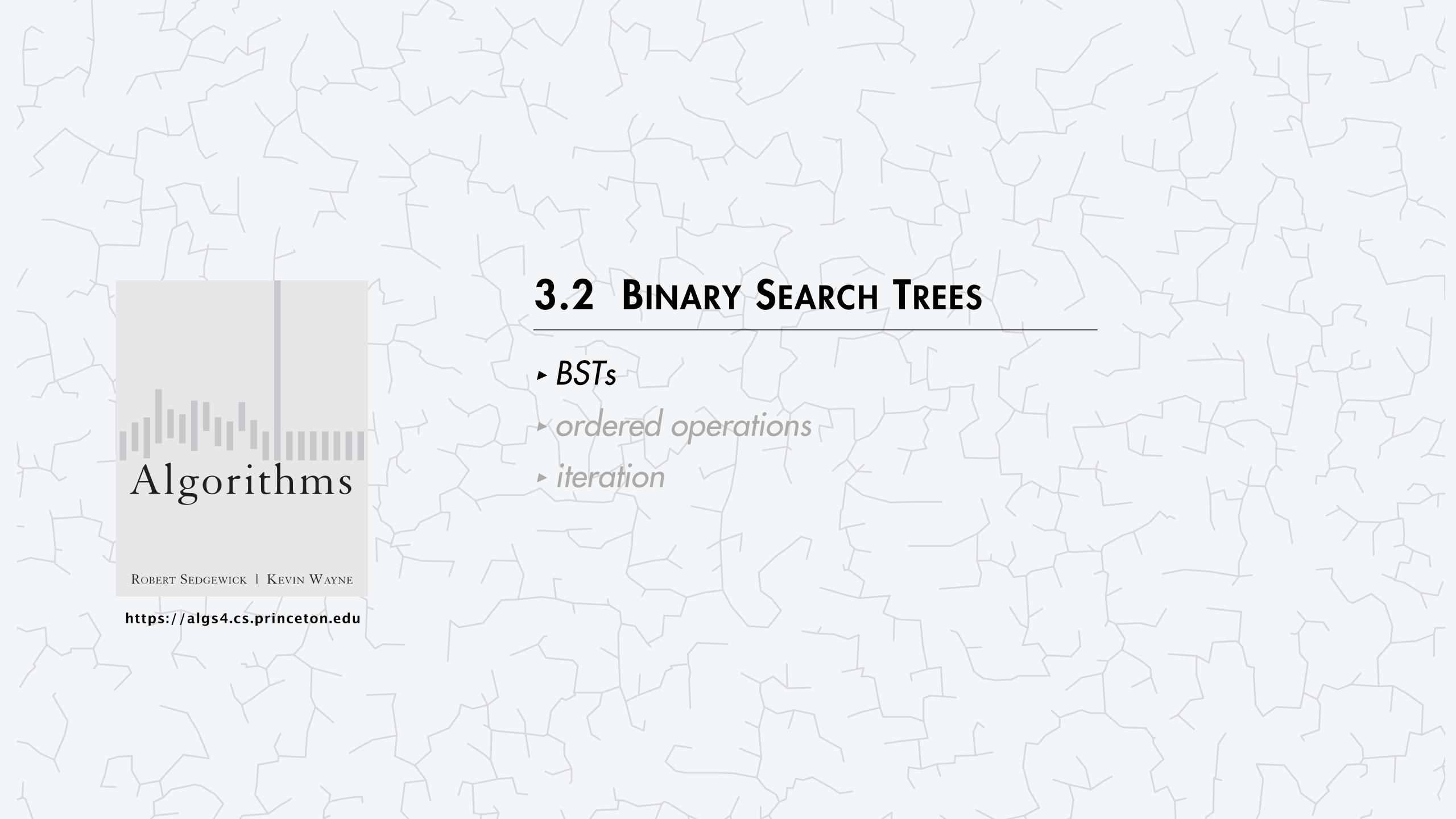
# Algorithms



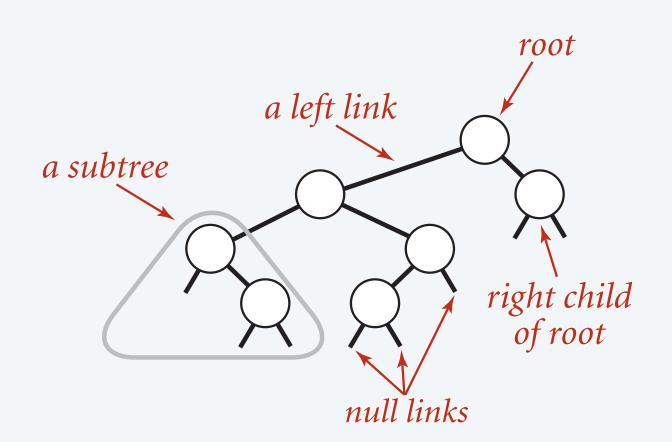


### Binary search trees

Definition. A BST is a binary tree in symmetric order.

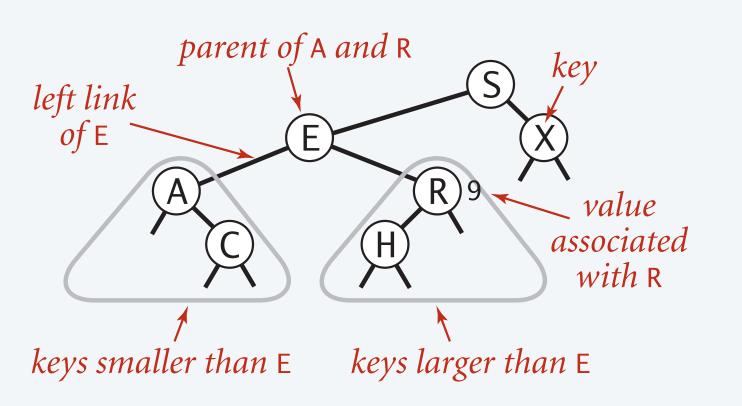
#### A binary tree is either:

- Empty.
- A node with links to two disjoint binary trees—
   the left subtree and the right subtree.



### Symmetric order. Each node has a key that is:

- Strictly larger than all keys in its left subtree.
- Strictly smaller than all keys in its right subtree.
- [Duplicate keys not permitted.]



## Binary search trees: poll 1



### Which of the following properties hold?

- A. If a binary tree is max-heap ordered, then it is symmetrically ordered.
- B. If a binary tree is symmetrically ordered, then it is max-heap ordered.
- C. Both A and B.
- D. Neither A nor B.

## Binary search tree demo



Search. If less, go left; if greater, go right; if equal, search hit.

#### successful search for H

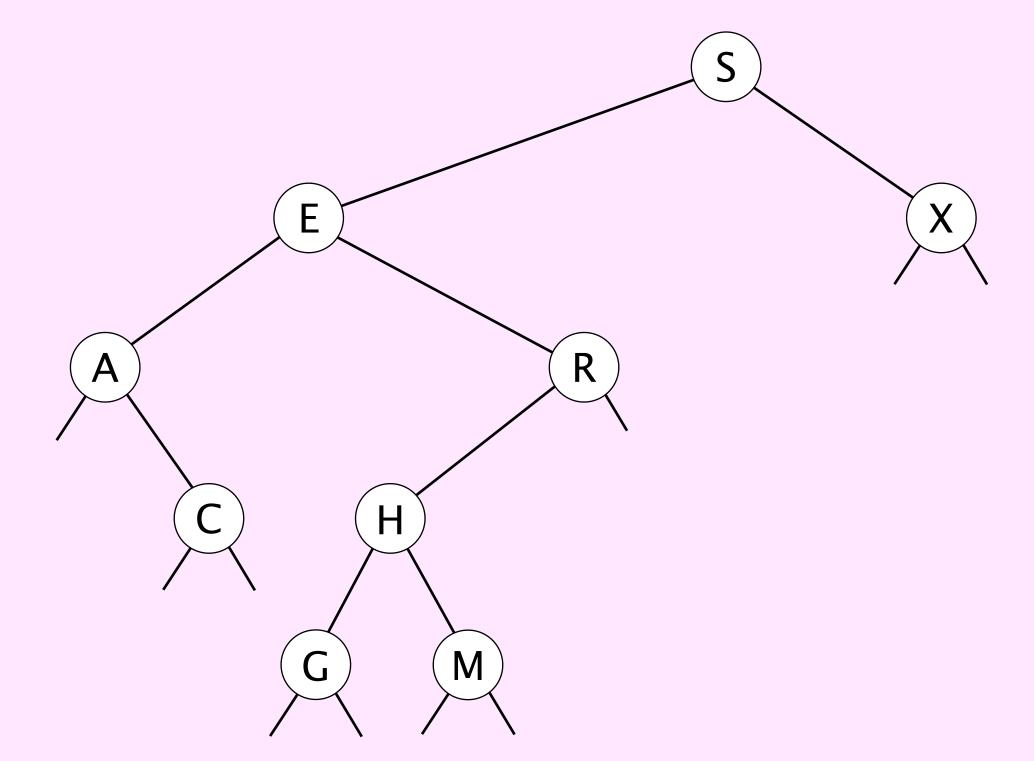


## Binary search tree demo



Insert. If less, go left; if greater, go right; if null, insert.

#### insert G



### BST representation in Java

Java representation. A BST holds a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.

```
smaller keys larger keys
```

```
private class Node {
    private Key key;
    private Value val;
    private Node left, right;

public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

BST Node key val left right

BST with smaller keys

BST with larger keys

Key and Value are generic types; Key is Comparable

binary search tree

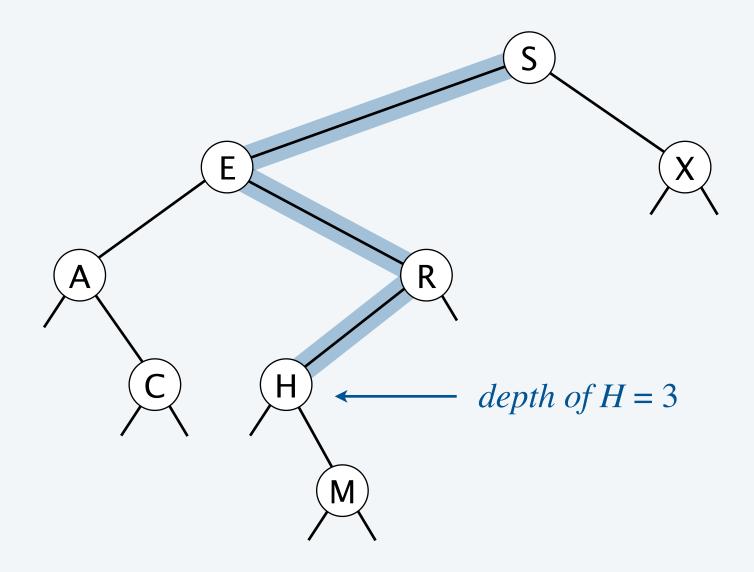
### BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value> {
   private Node root; \leftarrow root \ of \ BST
   private class Node
  { /* see previous slide */ }
   public void put(Key key, Value val)
   { /* see slide in this section */ }
   public Value get(Key key)
   { /* see next slide */ }
   public Iterable<Key> keys()
   { /* see slides in next section */ }
   public void delete(Key key)
   { /* see textbook */ }
```

### BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key) {
   Node x = root;
   while (x != null) {
      int cmp = key.compareTo(x.key);
      if (cmp < 0) x = x.left;
      else if (cmp > 0) x = x.right;
      else return x.val;
   }
   return null;
}
```



Cost. Number of compares = 1 + depth of deepest node reached.

#### **BST** insert

#### Put. Associate value with key.

- Search for key in BST.
- Case 1: Key in BST  $\Rightarrow$  reset value.
- Case 2: Key not in BST  $\Rightarrow$  add new node.

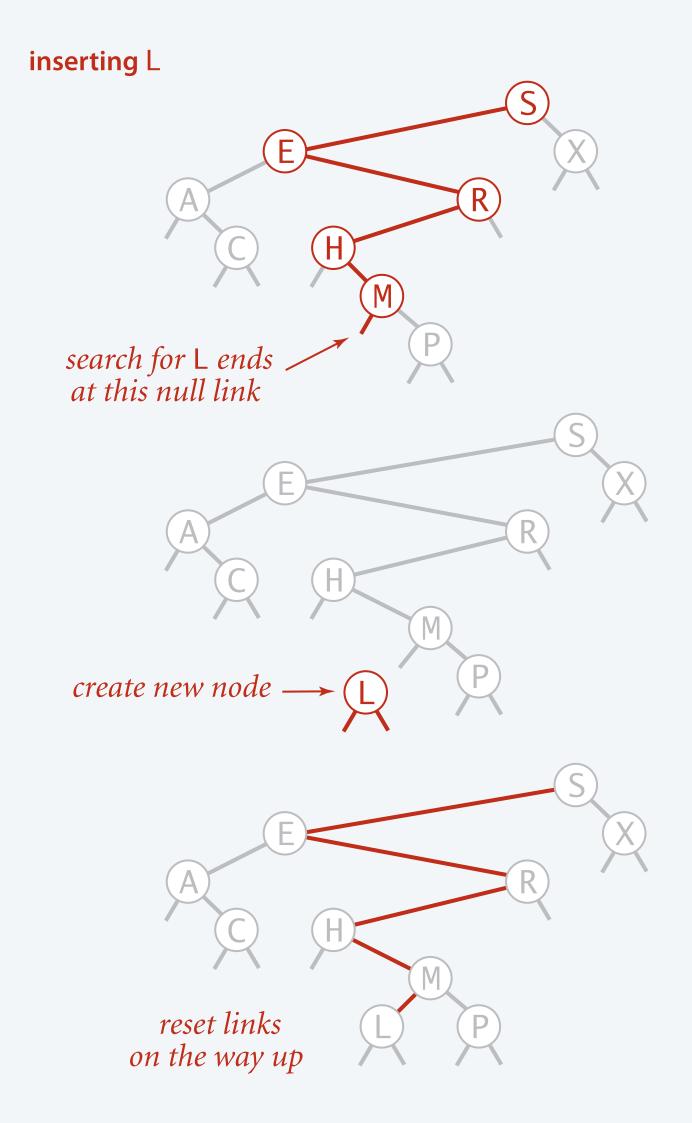
```
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);

    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else x.val = val;

    return x;
}

Warning: concise but tricky code; read carefully!
```

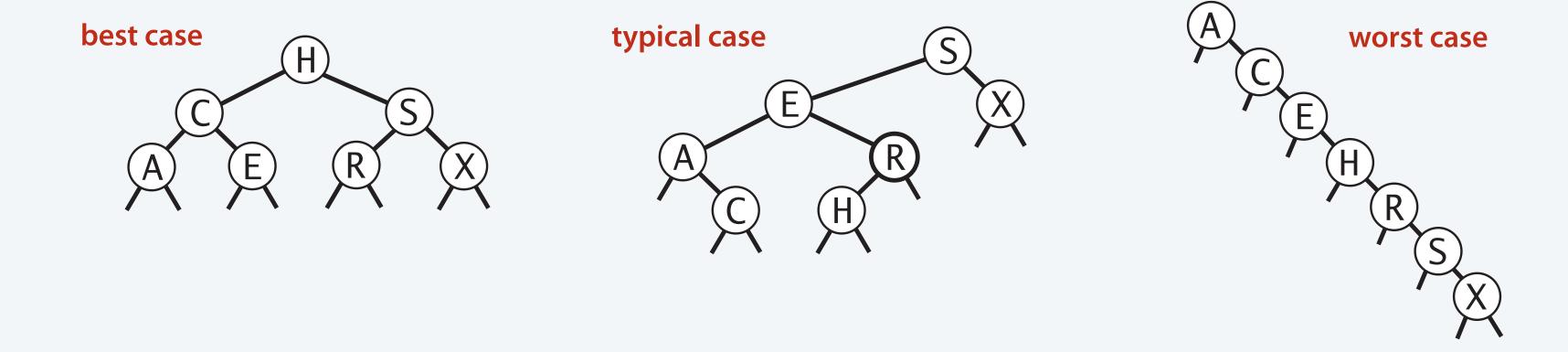


Cost. Number of compares = 1 + depth of deepest node reached.

insertion into a BST

### Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert = 1 + depth of deepest node reached.

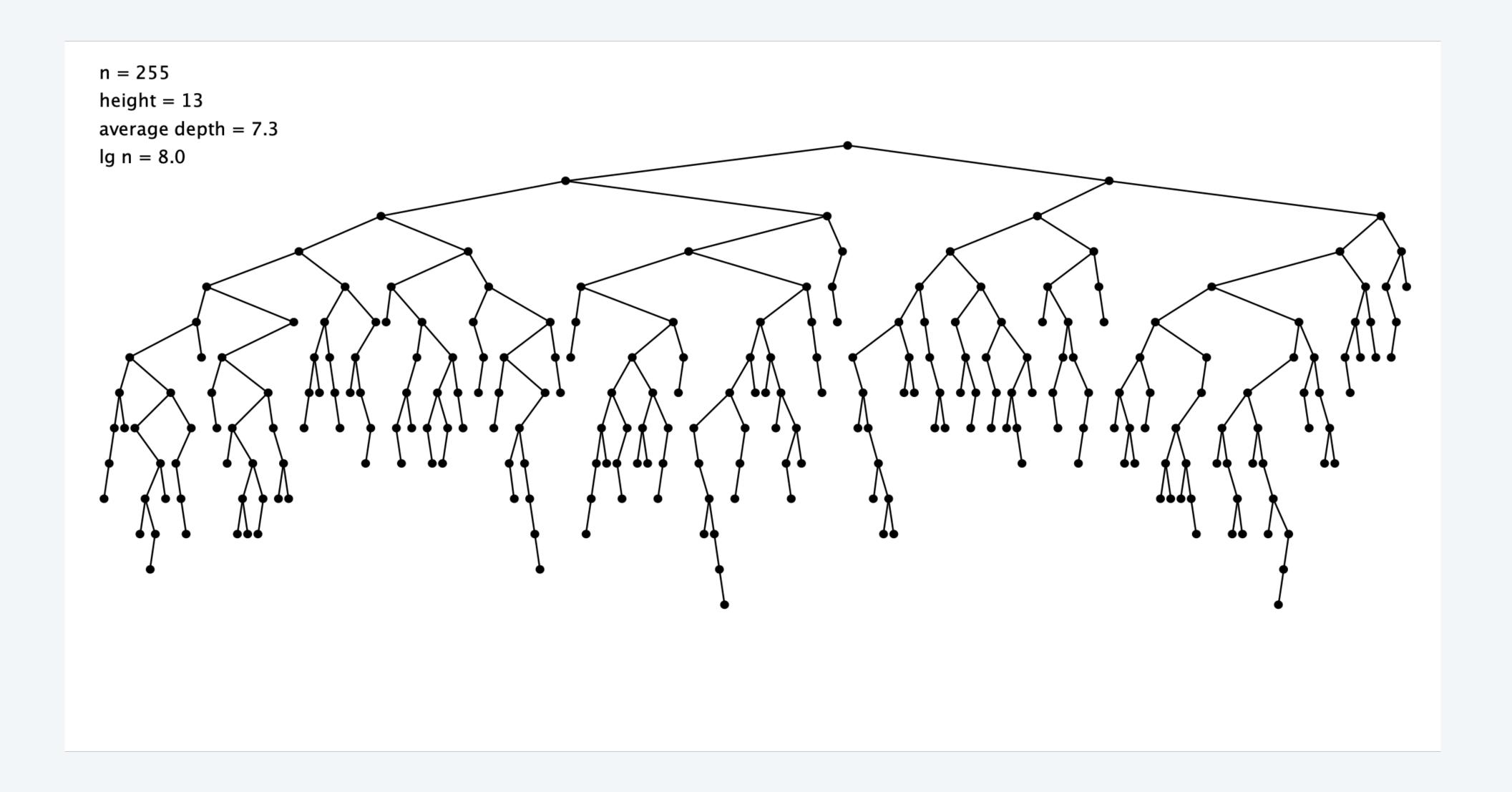


height between  $\log_2 n$  and n-1

Bottom line. Tree shape depends on order of insertion.

### BST insertion: random order visualization

Ex. Insert 255 keys in random order.



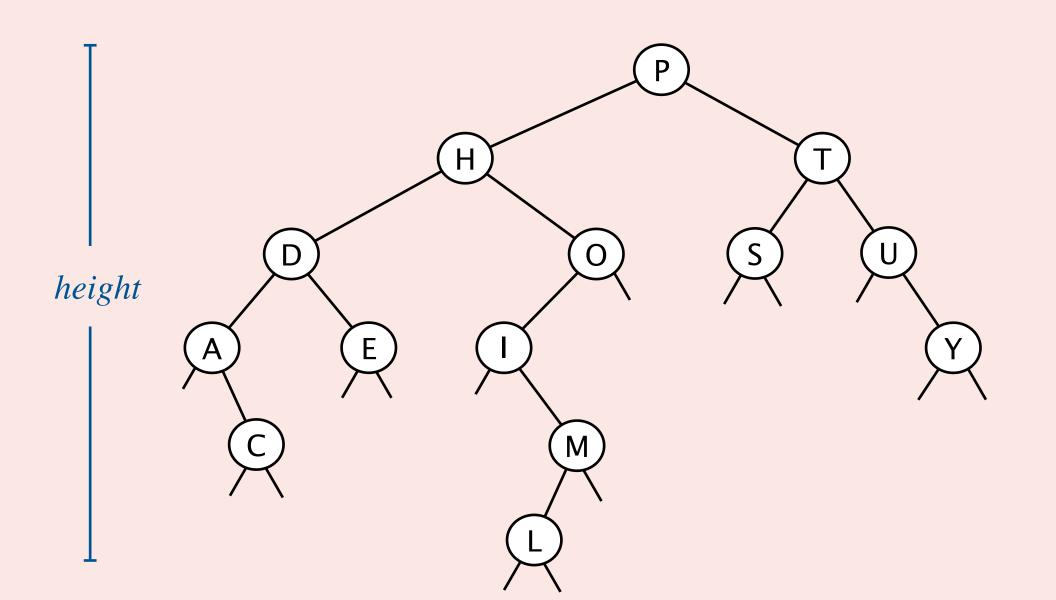
## Binary search trees: poll 2



Suppose that you insert n distinct keys in uniformly random order into a BST.

What is the expected height of the resulting BST?

- A.  $\sim \log_2 n$
- B.  $\sim 2 \ln n$
- **C.**  $\sim 4.31107 \ln n$
- $\mathbf{D.} \sim \frac{1}{2} \, \mathbf{r}$
- E.  $\sim n$



## ST implementations: performance summary

| implementation                                           | worst case |        | typical case |          | operations  |  |
|----------------------------------------------------------|------------|--------|--------------|----------|-------------|--|
|                                                          | search     | insert | search hit   | insert   | on keys     |  |
| sequential search<br>(unordered list)                    | n          | n      | n            | n        | equals()    |  |
| binary search<br>(ordered array)                         | log n      | n      | log n        | n        | compareTo() |  |
| BST                                                      | n          | n      | log n        | $\log n$ | compareTo() |  |
|                                                          |            |        |              |          |             |  |
| Why not shuffle to ensure<br>a (probabilistic) guarantee |            |        |              |          |             |  |

of  $\Theta(\log n)$  time à la quicksort?

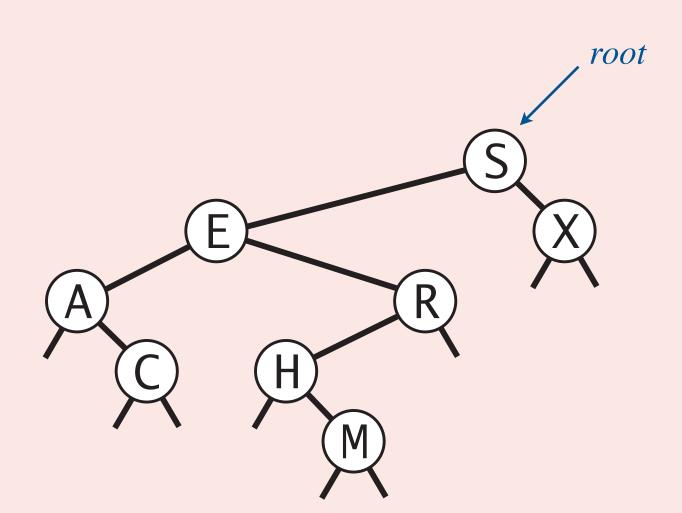




### In which order does traverse(root) print the keys in the BST?

```
private void traverse(Node x) {
  if (x == null) return;
  traverse(x.left);
  StdOut.println(x.key);
  traverse(x.right);
}
```

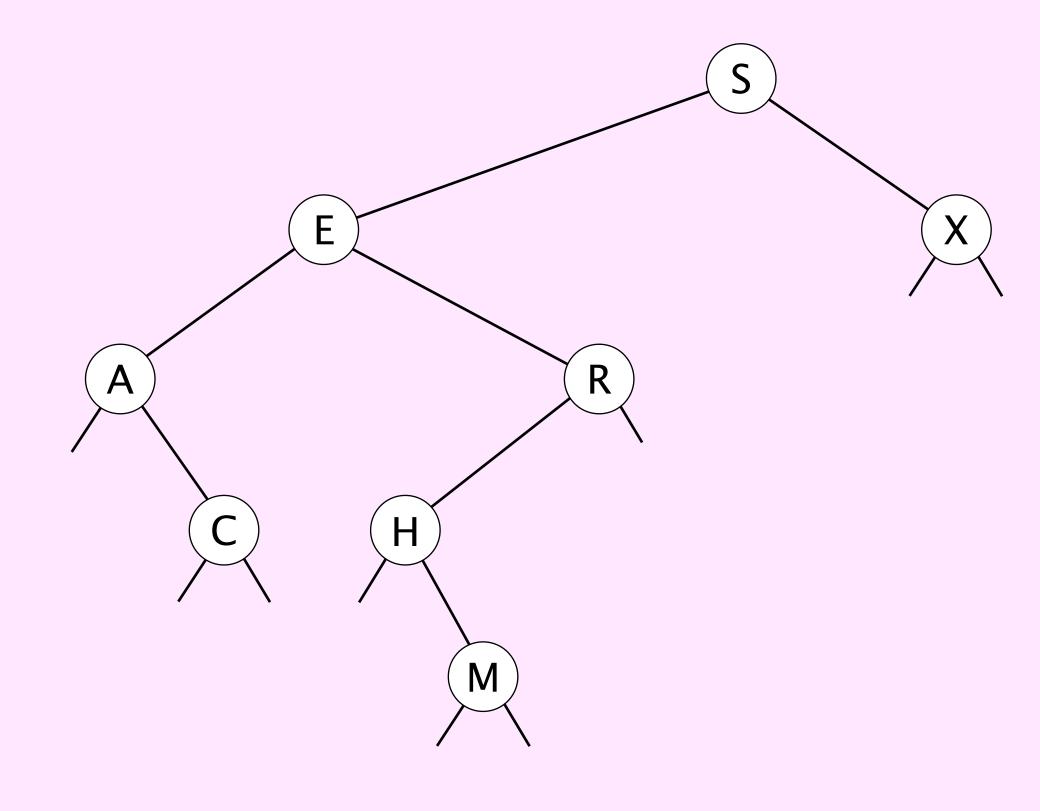
- A. ACEHMRSX
- B. SEACRHMX
- C. CAMHREXS
- D. SEXARCHM



### Inorder traversal



```
inorder(S)
  inorder(E)
     inorder(A)
         print A
         inorder(C)
            print C
            done C
         done A
     print E
     inorder(R)
         inorder(H)
            print H
            inorder(M)
              print M
               done M
            done H
         print R
         done R
     done E
  print S
  inorder(X)
     print X
     done X
  done S
```



output: A C E H M R S X

#### Inorder traversal

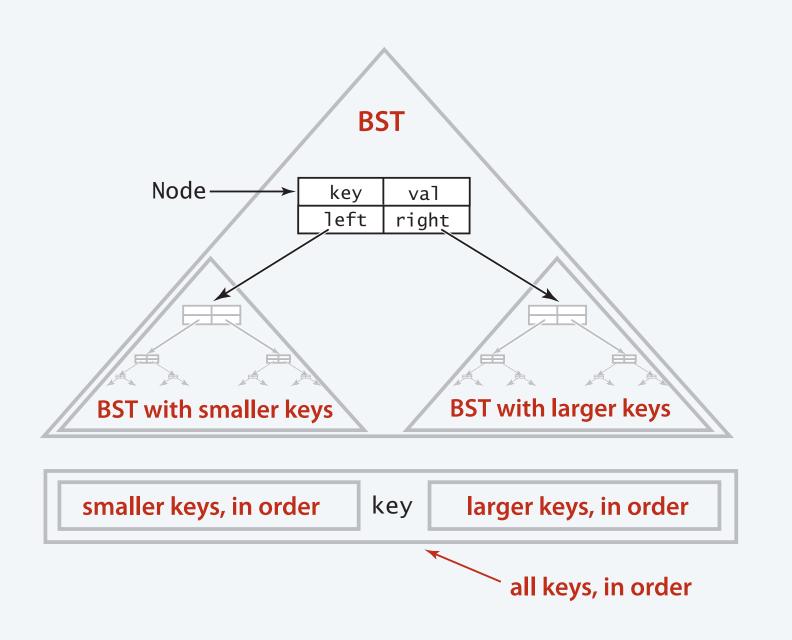
- Traverse left subtree.
- Enqueue key.

• Traverse right subtree.

add items to a collection that is Iterable and return that collection

```
public Iterable<Key> keys() {
    Queue<Key> queue = new Queue<Key>();
    inorder(root, queue);
    return queue;
}

private void inorder(Node x, Queue<Key> queue) {
    if (x == null) return;
    inorder(x.left, queue);
    queue.enqueue(x.key);
    inorder(x.right, queue);
}
```



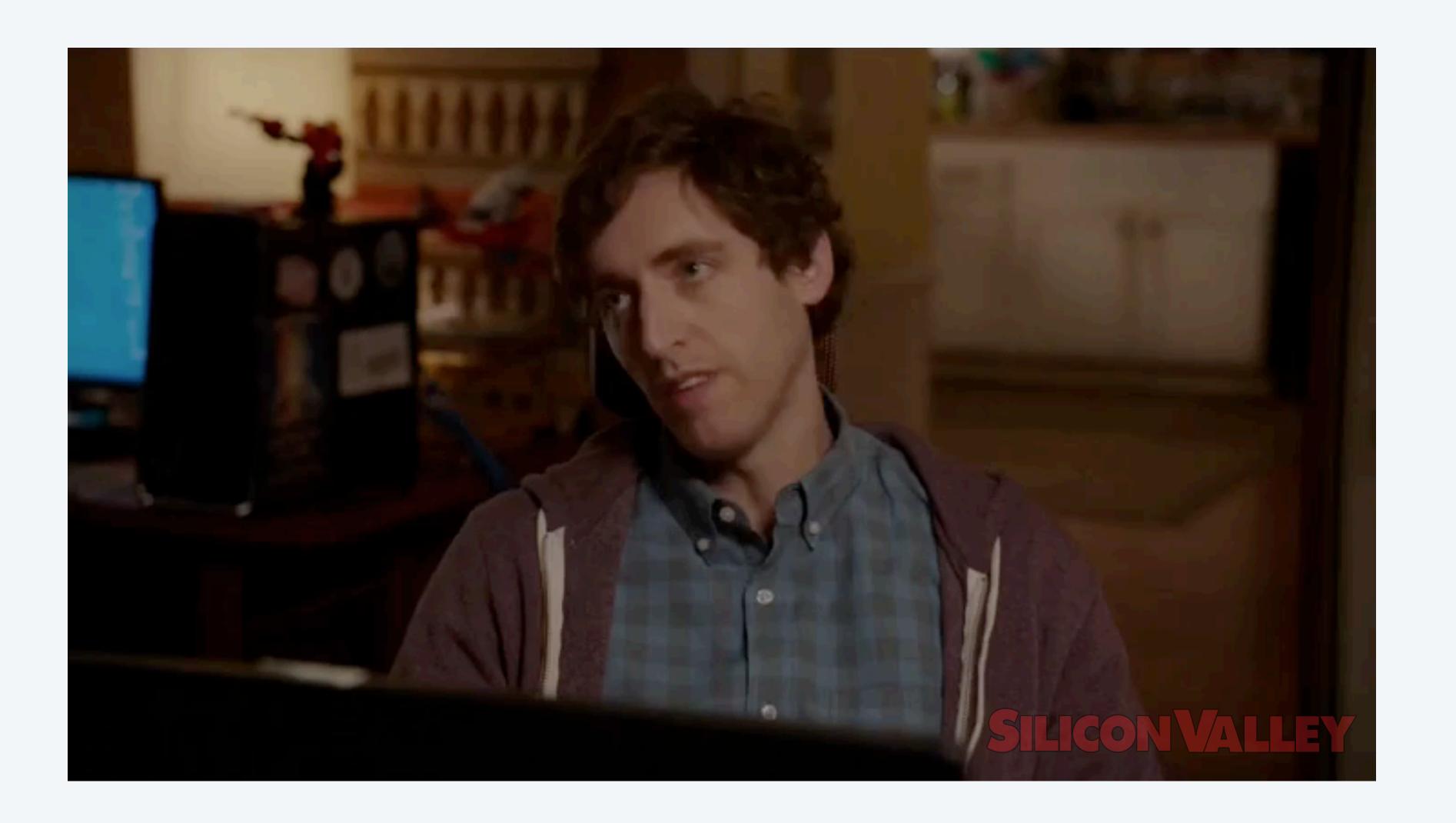
Property. Inorder traversal of a BST yields keys in ascending order.

## Inorder traversal: running time



Property. Inorder traversal of a binary tree with n nodes takes  $\Theta(n)$  time.

Pf.  $\Theta(1)$  time per node in BST.

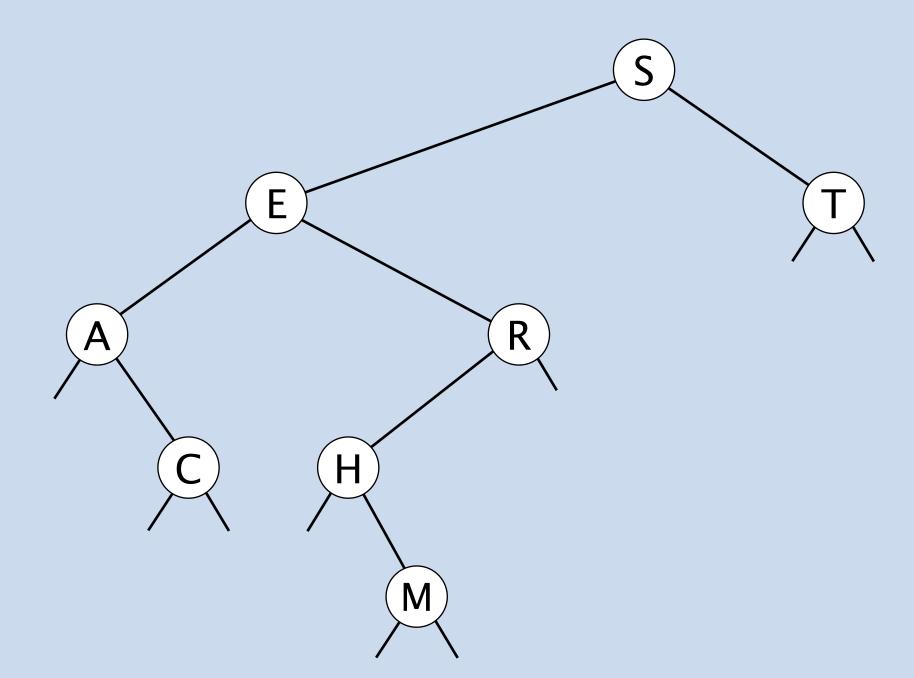


### Level-order traversal



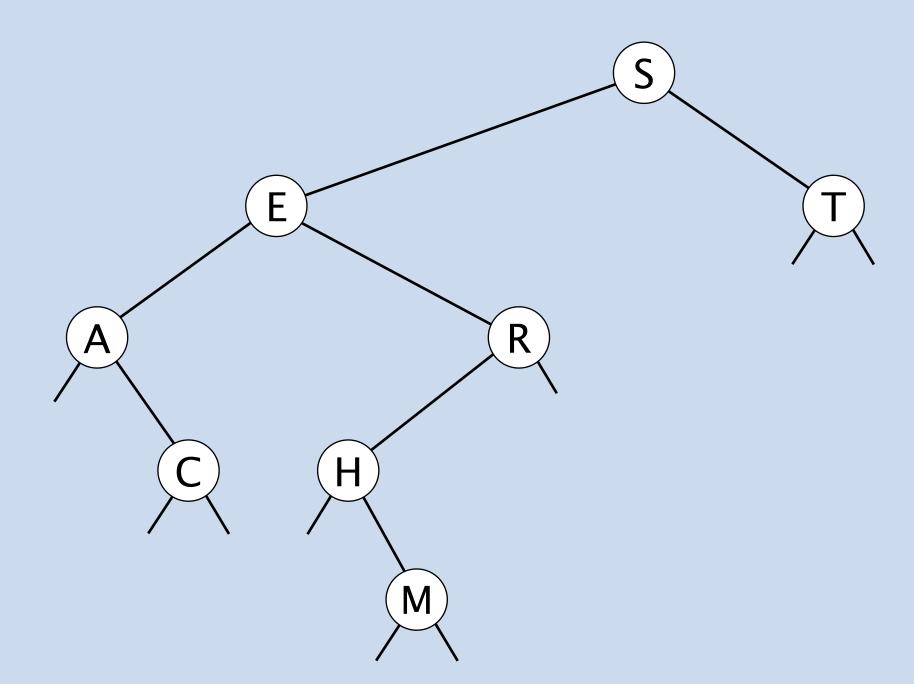
### Level-order traversal of a binary tree.

- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.
- •





Q1. How to compute level-order traversal of a binary tree in  $\Theta(n)$  time?

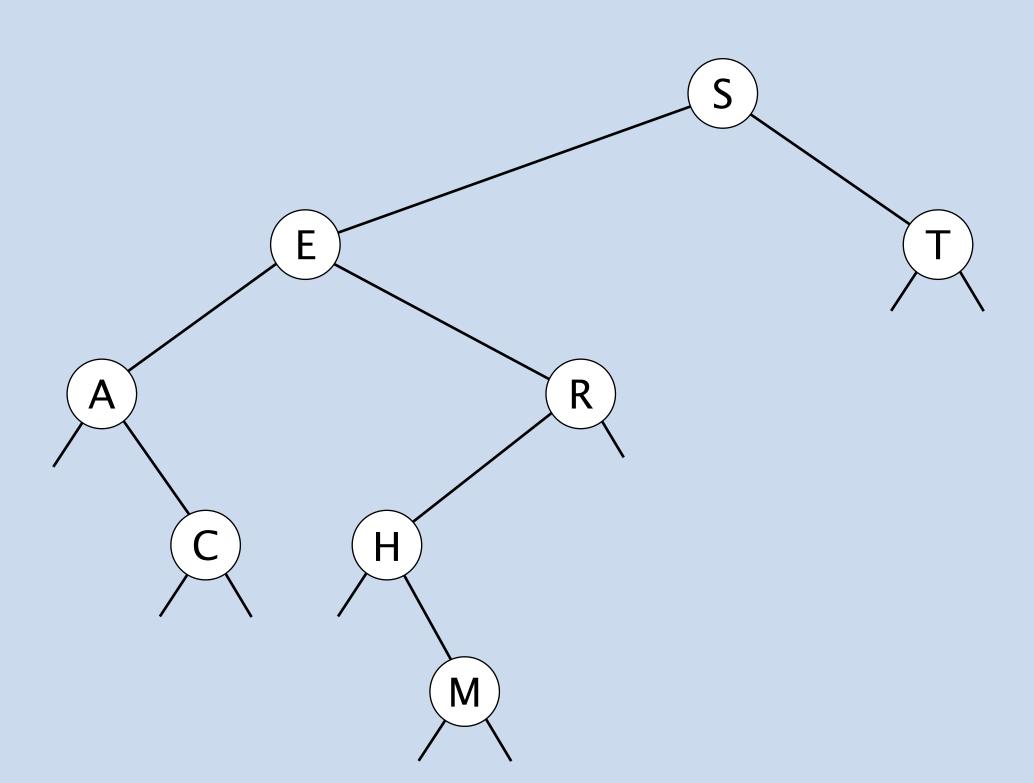


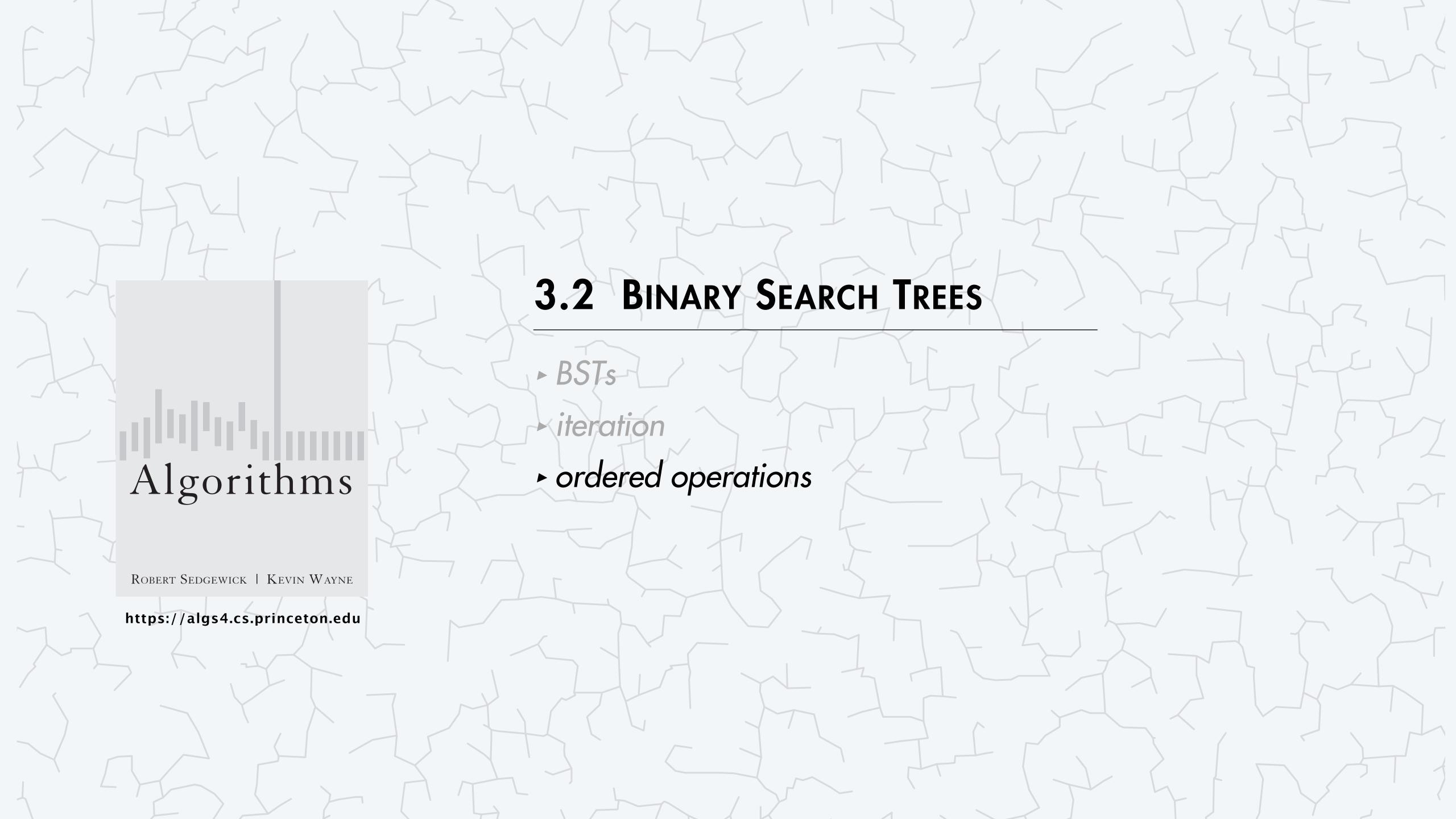
### Level-order traversal



Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

needed for PrairieLearn quizzes



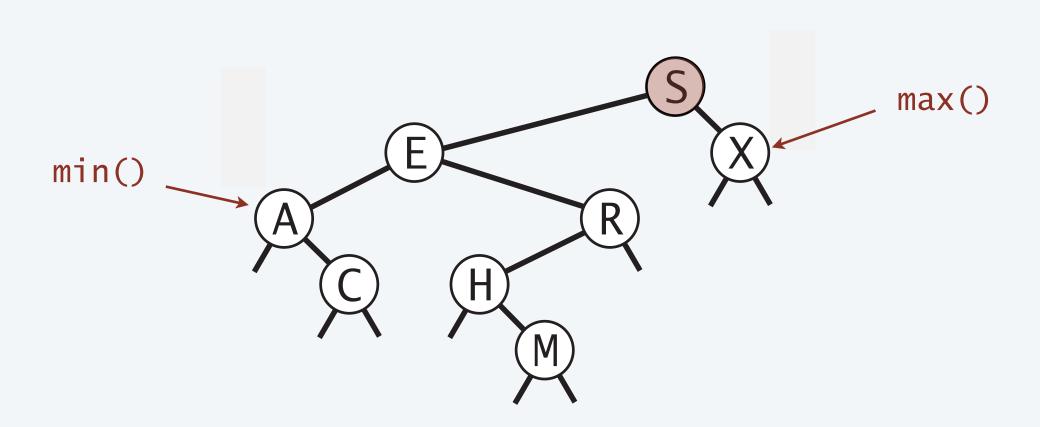


### Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

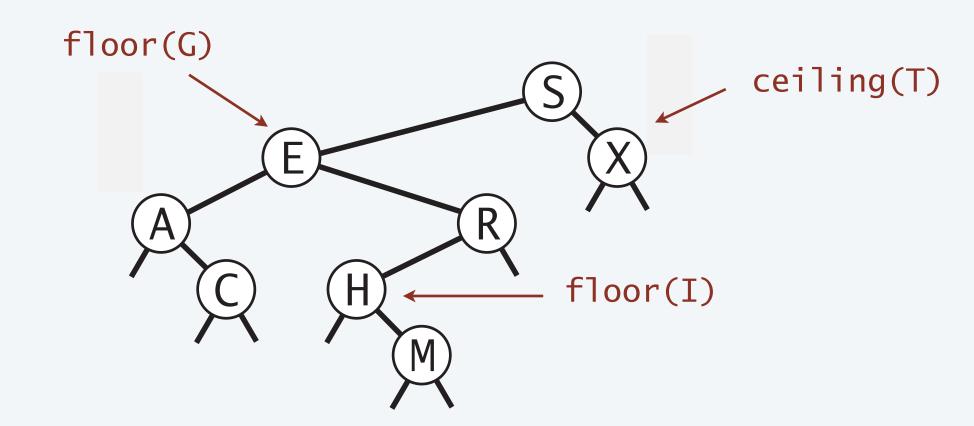
Q. How to find the min / max?



## Floor and ceiling

Floor. Largest key in BST ≤ query key.

Ceiling. Smallest key in BST ≥ query key.



### Computing the floor

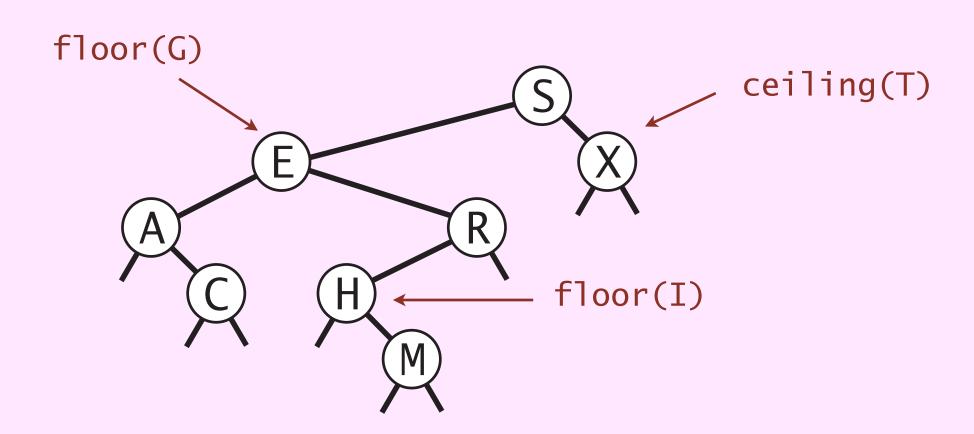


Floor. Largest key in BST ≤ query key.

Ceiling. Smallest key in BST ≥ query key.

#### Key idea.

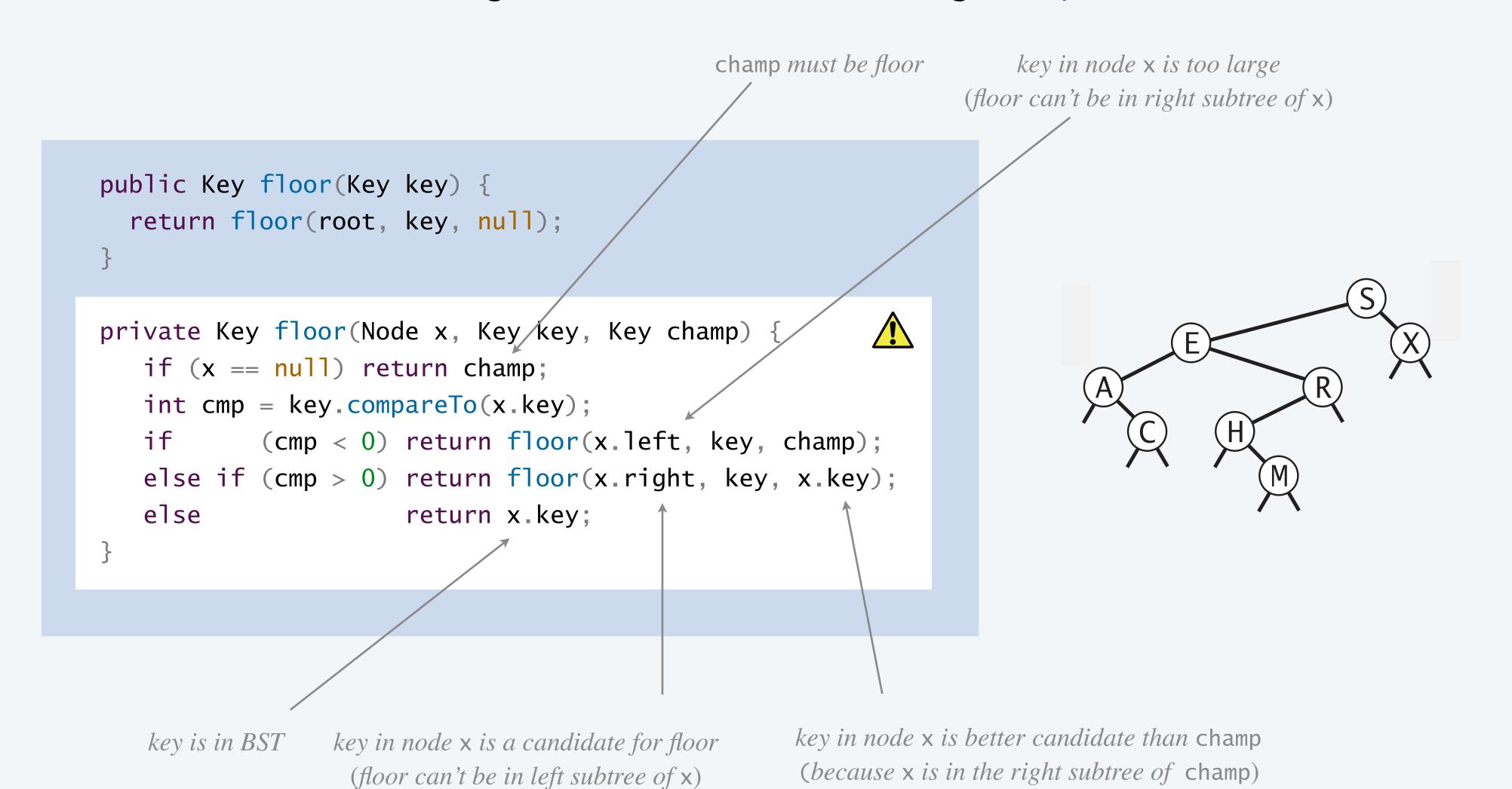
- To compute floor(key) or ceiling(key), search for key.
- Both floor(key) and ceiling(key) are on search path.
- Moreover, as you go down search path, any candidates get better and better.



### Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x.

Invariant 2. Node x is in the right subtree of node containing champ.  $\leftarrow$  assuming champ is not null



27

## BST: ordered symbol table operations summary

|                 | sequential<br>search | binary<br>search | BST         |                   |
|-----------------|----------------------|------------------|-------------|-------------------|
| search          | $\Theta(n)$          | $\Theta(\log n)$ | $\Theta(h)$ |                   |
| insert / delete | $\Theta(n)$          | $\Theta(n)$      | $\Theta(h)$ |                   |
| min / max       | $\Theta(n)$          | $\Theta(1)$      | $\Theta(h)$ | h = height of BST |
| floor / ceiling | $\Theta(n)$          | $\Theta(\log n)$ | $\Theta(h)$ |                   |
| rank            | $\Theta(n)$          | $\Theta(\log n)$ | $\Theta(h)$ |                   |
| select          | $\Theta(n)$          | $\Theta(1)$      | $\Theta(h)$ |                   |

worst-case running time of ordered symbol table operations

## ST implementations: summary

| implomontation                        | worst    | case     | ordered  | key<br>interface |  |
|---------------------------------------|----------|----------|----------|------------------|--|
| implementation                        | search   | insert   | ops?     |                  |  |
| sequential search<br>(unordered list) | n        | n        |          | equals()         |  |
| binary search<br>(sorted array)       | log n    | n        | <b>✓</b> | compareTo()      |  |
| BST                                   | n        | n        | <b>✓</b> | compareTo()      |  |
| red-black BST                         | $\log n$ | $\log n$ | <b>✓</b> | compareTo()      |  |
|                                       |          |          |          |                  |  |

next lecture: BST whose height is guarantee to be  $\Theta(\log n)$ 

## Credits

| image                      | source              | license |
|----------------------------|---------------------|---------|
| Inorder Traversal in a BST | Silicon Valley S4E5 |         |
| Binary Tree                | Daniel Stori        |         |

