

Final Exam Spring 2025

​ ​
​
This exam consists of 8 substantive questions. You have 3 hours – budget your time
wisely. Assume the armlab/gcc217 environment unless otherwise stated in a problem.

Do all of your work on these pages. You may use the provided blank spaces for scratch
space, however this exam is preprocessed by computer, so for your final answers to be
scored you must write them inside the designated spaces and fill in selected circles and
boxes completely (⚫ and ⬛, not ✔ or ✘). Please make text answers dark and neat.

Name:​ ​NetID:

Precept:

◯ P01 - MW 1:30​
Xiaoyan Li

◯ P04 - TTh 12:30
Tolulope Oshinowo

◯ P08 TTh 3:30
Yang Duan

◯ P02 - MW 3:30​
Xiaoyan Li

◯ P06 - TTh 1:30
Indu Panigrahi

◯ P09 TTh 7:30
Andrew Sheinberg

◯ P03 - TTh 12:30​
Lana Glisic

◯ P07 - TTh 1:30
Ryan Oet

This is a closed-book, closed-note exam, except you are allowed one two-sided study
sheet. Please place items that you will not need out of view in your bag or under your
working space at this time. Electronic devices such as cell phones, laptops,
smartwatches except to check the time, etc. may not be used during this exam.

This examination is administered under the Princeton University Honor Code. Students
should sit one seat apart from each other and refrain from talking to other students
during the exam. All suspected violations of the Honor Code must be reported to
honor@princeton.edu.

In the box below, copy and sign the Honor Code pledge before turning in your exam:
“I pledge my honor that I have not violated the Honor Code during this examination.”

​
​
​
​
​
​

X_________________________________

Question 0: Et ego [N.] spondeo, voveo ac iuro.​ ​ 0 points

Please don’t make the course staff’s life harder: make sure you have filled out your
name, NetID (i.e., armlab login – not PUID, not email alias), precept and the Honor
Code pledge text on the front page. Sign your name once you have finished the exam.

Question 1: A 2nd chance at midterm topics? Accepto. ​ 5 points

For each of the code snippets below, indicate whether the equality operation always
evaluates to true (1), always evaluates to false (0), or depends on the system because
the behavior is not guaranteed by the C90 standard.

 TRUE FALSE DEPENDS

a. sizeof(signed long) == ​
sizeof(unsigned long)

◯ ◯ ◯

b. sizeof(size_t) == ​
sizeof(unsigned long)

◯ ◯ ◯

c. sizeof(sizeof(char)) == ​
sizeof(char)

◯ ◯ ◯

d. char ac[] = "muratarum";​
ac[9] == (ac[8] - *ac)

◯ ◯ ◯

e.

int ai[] = {0, 4};​
int *pi = &ai[1];​
(pi - ai) == 4;

◯ ◯ ◯

Question 2: Four ballots per day stages per build​ ​ 5 points

Which stage of the build process (Preprocessor, Compiler, Assembler, or Linker) is
responsible for each of the following operations:

 P C A L

a. Combines object files’ contents ◯ ◯ ◯ ◯

b. Resolves references to external library
implementations

◯ ◯ ◯ ◯

c. Optimizes to use callee-saved registers ◯ ◯ ◯ ◯

d. Handles macro replacement, e.g., EOF​
(aka substitution or expansion)

◯ ◯ ◯ ◯

e. Checks for unterminated compound
statements (aka blocks)

◯ ◯ ◯ ◯

Page 2 of 10

Question 3: Urbi et Orbi and all the places variables live​12 points

Consider the following program:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>​
​
char fmt[] = "%lu\n";

size_t fun(char *x) {
 static size_t i;
 return ++i;
}​

int main(int argc, char **argv) {
 char *pc;
 size_t ulResult = 0;
 if(argc < 2)
 return EXIT_FAILURE;​

 pc = argv[1];
 while(*pc)
 ulResult = fun(pc++);
 printf(fmt, ulResult);
 return 0;
}

a. Fill in the memory section and size​
 on armlab for each variable:

 SECTION # BYTES

argv

x

pc

i

fmt

b. Replace the loop in main with a single​
 statement that calls a function from​
 the C string library, such that the​
 same result would be printed in the​
 subsequent printf:

​
​

Page 3 of 10

Question 4: Quo nomine vis vocari?​ ​ ​ ​ 11 points

Consider the following C function, whose identifier naming leaves much to be desired:​

struct Node {
 int payload;
 struct Node *next;
};

struct Node *mystery(struct Node *arg) {
 struct Node *var;
 ​
 if(!arg) return NULL;

 var = mystery(arg->next);
 if(!var) return arg;​
​
 arg->next->next = arg;
 arg->next = NULL;
 return var;
}

a.​ Determine what the function does, then for each specified identifier give a more

semantically meaningful name to replace its current vague identifier:

mystery var arg

 ​

b.​ Describe three cases that would be good function boundary tests for mystery, in

less than 10 words each.

●​ ​
​
​

●​ ​
​
​

●​ ​
​
​

Page 4 of 10

Question 5: Leo XIV has none of the long name issues​ 7 points

Lecture 22 gave an example of a buffer overrun, in which an int variable was corrupted
with character input that overran the buffer. The slide above shows the result, where
printing the overwritten variable results in four consecutive chars stored in memory –
the characters: 't', 't', 'i', '\0' – being interpreted as the int value 0x00697474.​

a.​ This result relies on many non-portable factors, e.g., the stack memory layout of
the function and that the size of four chars is also the precise size of an int. List
two more armlab properties that are not guaranteed by the C standard that
caused the bytes {'t', 't', 'i', '\0'} to be interpreted as 0x00697474.​

b.​ I asked ChatGPT to convert 0x00697474 to decimal and it got the wrong answer

(6900092, instead of the number on the slide). Prove yourself more reliable than
ChatGPT by converting the sum of the hex addition 0xC05 + 0x217 to decimal:

​
You may refer to this abbreviated ARM assembly language reference for Q6 – Q8.

Instruction(s) Description

{add,sub,lsl,sdiv} dst, src1, src2 dst = src1 {+, -, <<, / } src2

{beq,bne} label Go to label if comparison was {“equal”, “not equal”}

{b,bl} label {Unconditionally go to , Call function at} label

cmp first, second Compare first with second, setting bits in PSTATE

ldr dst, [src] Load 4 or 8 bytes pointed to by src into dst

ldrb dst, [src] Load 1 byte pointed to by src into dst

str src, [dst] Store 4 or 8 bytes in src to memory pointed to by dst

mov dst, src Copy contents of register src to register dst

ret Return to address pointed to by x30

R0 – R7 and R0 (w or x) Used for arguments to and return value from functions

R0 – R7 and R9 - R15 (w or x) Caller-saved scratch registers

Page 5 of 10

Question 6: Breaking a Cardinal rule of function calls​ 6 points

Consider the following function, modified from the Euclid program you saw in precept:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

 .equ LABS2, 8
 .equ LABS1, 16
 .equ LTEMP, 24
 .equ L2, 32
 .equ L1, 40

gcd:
 sub sp, sp, 48
 str x0, [sp, L1]
 str x1, [sp, L2]

 // lAbs1 = labs(l1)
 ldr x0, [sp, L1]
 bl labs
 str x0, [sp, LABS1]

 // lAbs2 = labs(l2)
 ldr x0, [sp, L2]
 bl labs
 str x0, [sp, LABS2]

gcdLoop:
 // if (lAbs2 == 0) goto loopEnd
 ldr x0, [sp, LABS2]
 cmp x0, 0
 beq loopEnd

 27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 // lTemp = lAbs1 % lAbs2
 // rem = (dividend - ​
 // (quotient * divisor))
 ldr x0, [sp, LABS1]
 ldr x1, [sp, LABS2]
 sdiv x2, x0, x1
 mul x3, x2, x1
 sub x4, x0, x3
 str x4, [sp, LTEMP]

 // lAbs1 = lAbs2
 ldr x0, [sp, LABS2]
 str x0, [sp, LABS1]

 // lAbs2 = lTemp
 ldr x0, [sp, LTEMP]
 str x0, [sp, LABS2]

 // goto gcdLoop
 b gcdLoop

loopEnd:
 ldr x0, [sp, LABS1]
 add sp, sp, 48
 ret

a.​ I asked ChatGPT what the next instruction after the ret on line 51 is executed

will be, and it answered that this function returns to the next instruction after the
bl gcd in its caller. That’s not the case here – there’s a bug! Why does this
function not return to its caller, and to where does it return instead? Be specific.​

b.​ Imagine unconditional branch (b) instructions were no longer a part of ARM

assembly language. Replace line 46 with no more than 2 instructions that would
result in the same behavior as the existing b gcdLoop instruction.

Page 6 of 10

Question 7: Does ChatGPT need more Scrutatoribus?​ 14 points​

ChatGPT infamously had trouble correctly counting the
number of occurrences of a letter in some words, as seen
on the image on this page. In a running theme, you can do
better – this time, in assembly!

The C function Str_count, shown below on the left,
returns the number of instances of its char parameter c
within its string parameter pcStr before the first nullbyte. ​
​
Translate this function into assembly language using the
14 instructions below – you must use each letter exactly
once. We have given you the assembly language function
structure in the box to the right of the C code.​
​

#include <stddef.h>​
#include <assert.h>​
size_t Str_count(const char* pcStr, char c) {​
 size_t ulCount = 0;​
 assert(pcStr != NULL);​
 while(*pcStr != '\0') {​
 if(*pcStr == c)​
 ulCount++;​
 pcStr++;​
 }​
 return ulCount;​
}

 .section .text​
.global Str_count​
Str_count:​
 sub sp, sp, 16​
 str xzr, [sp]​
 str x30, [sp,8]​
​
 // Your instructions go here​
​
 ldr x30, [sp, 8]​
 add sp, sp, 16​
 ret

These are the 14 instructions you will use to fill the body of Str_count. Fill in one letter
on each blank below, in the order in which they should appear in the function.​

A
B
C
D
E
F
G

Done:​
Loop:​
NoCount:​
add x0, x0, 1​
add x3, x3, 1​
b Loop​
beq Done

 H
I
J​
K​
L​
M​
N

bne NoCount​
cmp w2, w1​
cmp w2, wzr​
ldr x0, [sp]​
ldr x3, [sp]​
ldrb w2, [x0]​
str x3, [sp]

​
​
__ __ __ __ __ __ __ __ __ __ __ __ __ __

Page 7 of 10

Question 8: Habemus iterum “Iterum”​ ​ ​ ​ 10 points

I asked ChatGPT to solve the Fall 2022 final exam “Encore” problem, which required
generating the machine code for the instruction adr x1, label2. In that problem,
label2’s address was 0x217217 and the address of the adr instruction itself was
0x214127. The correct answer was 0x10018781.

Here was the response from ChatGPT:

​
​
Your questions and a reference sheet for adr appear on the next page.​

Page 8 of 10

​

a.​ ChatGPT made major errors in (1) the initial paragraph, (2) Step 1, (3) Step 4
bold header, and (4) a bullet point in Step 4. Find and circle each of these four
errors in the ChatGPT response on the previous page – be precise as to which
portion constitutes the error.​
​
For (3), the error is not the use of 0b… as a shorthand for a binary number. This
notation isn’t valid C90 but is valid in some languages and eminently reasonable. ​
​
Note that each error is identified only once, even if it cascades through the
answer. For example, if ChatGPT claimed 1 + 1 = 3, you would circle that
claim, not subsequent uses of the erroneous 3 later in the calculation.​
​
Hint: there’s also a minor error in Step 2: dividing by 4 gets the immediate hi field​

b.​ One last time, prove yourself better than ChatGPT. In the box below, give the
(correct!) hex machine code for the instruction adr x26, label3 where label3’s
address is 0x4217A7 and the address of the adr instruction itself is 0x402170.
(ChatGPT says the answer to this question is 0x073F2E9A … do you trust it?)​

​

As a reminder, the relative offset calculation is the label address minus the adr
instruction’s address – ChatGPT did manage to get that order right in its
response on the previous page.

Page 9 of 10

Fumus albus! Question 8 was the last question! ​
​
Extra omnes! I hope you take with you from COS 217 many useful skills and a good
deal of pride for having persevered through it, even if perhaps you’d like to lock the
memories of the midterm exam, late night debugging sessions, etc. away cum clave
and throw away the key.

(The space below is intentionally left blank. You may use it for scratch work, but any
answers given below will not be graded.)

Q0: And I, [name], so promise, pledge and swear.​
Q1: I accept; surrounded by walls.​
Q3: To the City and the World.​
Q4: By what name do you wish to be called?​
Q7: Scrutineers – vote checkers.​
Q8 (taking some liberties): We have, again, “Encore”​
This page: White smoke!; Everyone out!; with a key.

Page 10 of 10

	Question 0: Et ego [N.] spondeo, voveo ac iuro.​​0 points
	Question 1: A 2nd chance at midterm topics? Accepto. ​5 points
	Question 2: Four ballots per day stages per build​​5 points
	Question 3: Urbi et Orbi and all the places variables live​12 points
	
	Question 4: Quo nomine vis vocari?​​​​11 points
	
	b.​Describe three cases that would be good function boundary tests for mystery, in less than 10 words each.
	Question 5: Leo XIV has none of the long name issues​7 points
	Question 6: Breaking a Cardinal rule of function calls​6 points
	
	Question 7: Does ChatGPT need more Scrutatoribus?​14 points​
	​​__ __ __ __ __ __ __ __ __ __ __ __ __ __
	Question 8: Habemus iterum “Iterum”​​​​10 points

