COS 445 - PSet 4

Due online Monday, April 8th at $11: 59 \mathrm{pm}$.

Instructions:

- Some problems will be marked as no collaboration problems. This is to make sure you have experience solving a problem start-to-finish by yourself in preparation for the midterms/final. You cannot collaborate with other students or the Internet for these problems (you may still use the referenced sources and lecture notes). You may ask the course staff clarifying questions, but we will generally not give hints.
- Submit your solution to each problem as a separate PDF to codePost. Please make sure you're uploading the correct PDFs to the correct locations! ${ }^{1}$ If you collaborated with other students, or consulted an outside resource, submit a (very brief) collaboration statement as well. Please anonymize your submission, although there are no repercussions if you forget.
- The cheatsheet gives problem solving tips, and tips for a "good proof" or "partial progress."
- Please reference the course collaboration policy here.

For convenience, we restate some definitions used in this problem set.

[^0]
Problem 1: Combinatorial Auctions (20 points, no collaboration)

In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some valuation function $v_{i}(\cdot)$ which takes as input a set S of items and outputs that bidder's value for that set (so $v_{i}(S)=5$ means that bidder i gets value 5 for receiving exactly the set S). These functions will always be monotone $\left(v_{i}(S \cup T) \geq v_{i}(S)\right.$ for all $\left.S, T\right)$, and satisfy $v_{i}(\emptyset)=0$. But you should make no other assumptions on $v_{i}(\cdot)$. Each item can be awarded to at most one bidder.

The designer's goal is to distribute the items to the bidders (in a way such that each item is awarded to at most one bidder), and to do so in a way that maximizes the welfare (the sum over all i of the value that bidder i has for the set they receive). Design an auction that is incentive compatible and maximizes welfare. A complete solution should describe:

- On bids $b_{1}(\cdot), \ldots, b_{n}(\cdot)$, what set S_{i} does bidder i get?
- On bids $b_{1}(\cdot), \ldots, b_{n}(\cdot)$, what price does bidder i pay?

You should give both answers as an explicit formula. For example, "bidder i should pay 5 " is an explicit formula. So is "bidder i should pay $\sum_{j \neq i} b_{j}(\{1\})$." "Bidder i should pay the harm they cause to bidder $i-1$ " is not an explicit formula. Similarly, "Bidder i should get set $\{1,2\}$ " is an explicit formula. So is "Bidder i should get the set S_{i} which maximizes $b_{1}\left(S_{i}\right)+b_{i}\left(S_{i}\right)$." "Bidder i should get the set which they are awarded in the welfare-maximizing allocation" is not an explicit formula.

At the same time, you do not need to give an algorithm to explicitly find the set or payments that result from your formula. You just need to write a clear formula that clearly defines what sets/payments to use.

Hint: The intention of this problem is for you to figure out how to mechanically instantiate the VCG mechanism for this setting. You are allowed to use the VCG auction for guidance and provide a complete proof that your auction is incentive compatible and maximizes welfare. You are also allowed to design an auction and prove that your auction is a special case of VCG (this proof might be pretty short).

Problem 2: Some issues with Greedy (40 points)

In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some valuation function $v_{i}(\cdot)$ which takes as input a set S of items and outputs that bidder's value for that set (so $v_{i}(S)=5$ means that bidder i gets value 5 for receiving set S). These functions will always be monotone $\left(v_{i}(S \cup T) \geq v_{i}(S)\right.$ for all $\left.S, T\right)$, and satisfy $v_{i}(\emptyset)=0$. Unless otherwise specified, you should not make any other assumptions on $v_{i}(\cdot)$.

Consider the following mechanism for allocating items:

- Initialize $S_{i}=\emptyset$ (each bidder i initially gets no items). Initialize $p_{i}=0$ (each bidder initially pays 0).
- For $j=1$ to m (for each item in order)
- Ask each bidder their marginal value for item $j: b_{i j}\left(S_{i}\right)=v_{i}\left(S_{i} \cup\{j\}\right)-v_{i}\left(S_{i}\right)$ (how much additional value would they get right now by adding j to their current set S_{i}).
- Reveal all bids to all bidders (that is, for all i, reveal the marginal value that bidder i reported for item j to all bidders).
- Award item j to the bidder i who reports the largest value (breaking ties lexicographically), add to their payment the second-highest report. That is, if i reports the largest marginal value and i^{\prime} reports the second-largest, Update S_{i} to $S_{i} \cup\{j\}$, and p_{i} to $p_{i}+b_{i^{\prime} j}\left(S_{i^{\prime}}\right)$.
- Award bidder i the set S_{i} of items and charge them p_{i}.

Part a (20 points)

Prove that if all valuation functions are additive (that is, $v_{i}(S)=\sum_{j \in S} v_{i}(\{j\})$, for all S), then it is a Nash equilibrium for all bidders to truthfully report $b_{i j}\left(S_{i}\right):=v_{i}\left(S_{i} \cup\{j\}\right)-v_{i}\left(S_{i}\right)$ in every round.

Hint: Remember that a list of strategies are a Nash equilibrium if every player i is best responding to the other players.

Part b (10 points)

Prove that, even if all valuation functions are additive and $n=m=2$, it is not a dominant strategy for bidders to truthfully report $b_{i j}\left(S_{i}\right):=v_{i}\left(S_{i} \cup\{j\}\right)-v_{i}\left(S_{i}\right)$ in every round.

Hint: It may help to explicitly think about what strategies a bidder can use in this auction. Recall that a dominant strategy is a best response to every strategy the other player might use. So if you want to show that something is not a dominant strategy,...

Part c (10 points)

Provide one example of valuation functions $v_{1}(\cdot)$ and $v_{2}(\cdot)$, such that it is not a Nash equilibrium for both bidders to bid their true marginal valuations. Specifically, prove (in your example) that if bidder 2 tells the truth, then bidder 1 can do strictly better by lying.

Problem 3: Revenue Equivalence (50 points)

Consider a single-item auction with two bidders whose values are drawn from the equal-revenue curve E (which has CDF $F_{E}(x)=1-1 / x$ for $x \geq 1$ and $F_{E}(x)=0$ for $x<1$, and PDF $f_{E}(x)=1 / x^{2}$ for $x \geq 1$ and $f_{E}(x)=0$ for $\left.x<1\right) .{ }^{2}$ The following parts will guide you through a proof to find a Bayes-Nash equilibrium of the first-price auction using Revenue Equivalence. You should complete all parts and not provide an alternative proof.

Recall that a bidding strategy $b_{1}(\cdot)$ is a best response to $b_{2}(\cdot)$ if: for all v_{1}, in expectation over $v_{2} \leftarrow E$, and bidder two bidding $b_{2}\left(v_{2}\right)$, bidder 1's payoff is maximized by bidding $b_{1}\left(v_{1}\right)$. Two bidding strategies form a Bayes-Nash Equilibrium if they are best responses to each other. Recall also that your payoff from a first price auction is equal to $v-b$ if you bid b and win, and zero otherwise.

Part a (10 points)

What is the expected revenue of the second-price auction when two bidders with values independently drawn from equal-revenue curves bid their true value? You should also prove that you computed your answer correctly.

Part b (10 points)

In the second-price auction, what is the expected payment made by bidder one, conditioned on bidding v_{1}, and that bidder two truthfully reports $v_{2} \leftarrow E$? You should also prove that you computed your answer correctly.

Note that we are not conditioning on bidder 1 winning. To be extra formal, let $P_{1}^{S P A}\left(v_{1}\right)$ denote the random variable that is equal to v_{2} if $v_{1} \geq v_{2}$, and 0 otherwise (that is, Player One pays v_{2} when they win, and 0 if they do not). What is $\mathbb{E}_{v_{2} \leftarrow E}\left[P_{1}^{S P A}\left(v_{1}\right)\right]$, as a function of v_{1} ?

Part c (10 points)

For a given bidding strategy $b(\cdot)$, define $P_{1}^{F P A}\left(v_{1}, b\right)$ to be the random variable that is equal to $b\left(v_{1}\right)$ if $v_{1}>v_{2}$, and 0 otherwise. Find a bidding strategy $b(\cdot)$ such that:

- $b(\cdot)$ is strictly monotone increasing on $(1, \infty)$ (i.e., such that $\left.b(v)>b\left(v^{\prime}\right) \Leftrightarrow v>v^{\prime}\right)$. Therefore, bidder 1 will win the first price auction exactly when $v_{1}>v_{2}$ if both bidders use strategy $b(\cdot)$.
- For all $v_{1} \in[1, \infty), \mathbb{E}_{v_{2} \leftarrow E}\left[P_{1}^{F P A}\left(v_{1}, b\right)\right]=\mathbb{E}_{v_{2} \leftarrow E}\left[P_{1}^{S P A}\left(v_{1}\right)\right]$. That is, the expected payment made by bidder 1 , conditioned on v_{1}, and $v_{2} \leftarrow E$, is the same in both the first-price auction (when both bidders use $b(\cdot)$) and second-price auction (when both bidders tell the truth).

You should also prove that your answer has these properties.

Part d (20 points)

Prove that the strategy you found in Part c is a Bayes-Nash Equilibrium of the first-price auction for two bidders with values drawn from the equal-revenue curve. You will receive partial credit

[^1]for correctly setting up the necessary equations and verifying them with an online solver. For full credit, you should also solve the necessary equations.

Hint: Proving this inevitably will require taking derivatives, but there is a clever trick that avoids overly painful calculations. If you are dreading the calculus you're about to do, try to be creative with other ways you can work through the math.

Hint: You can assume the following fact without proof: for any non-negative, continuous and strictly increasing $f:(x, \infty) \rightarrow \mathbb{R}$, there exist $y \in \mathbb{R}$ and $z \in \mathbb{R} \cup\{\infty\}$ such that the image of f is (y, z).

Extra Credit: Walrasian Equilibria

Recall that extra credit is not directly added to your PSet scores, but will contribute to your participation. Some extra credits are quite challenging. We do not suggest attempting the extra credit problems for the sake of your grade, but only to engage deeper with the course material. If you are interested in pursuing an IW/thesis in CS theory, the extra credits will give you a taste of what that might be like. ${ }^{3}$

For this problem, you may collaborate with any students and office hours. You may not consult course resources or external resources, as this is a proof of a well-known result. ${ }^{4}$

In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some valuation function $v_{i}(\cdot)$ which takes as input a set S of items and outputs that bidder's value for that set (so $v_{i}(S)=5$ means that bidder i gets value 5 for receiving set S). These functions will always be monotone $\left(v_{i}(S \cup T) \geq v_{i}(S)\right.$ for all $\left.S, T\right)$, and satisfy $v_{i}(\emptyset)=0$. A Walrasian Equilibrium is a non-negative price for each item \vec{p} such that:

- Each buyer i selects to purchase a set $B_{i} \in \arg \max _{S}\left\{v_{i}(S)-\sum_{j \in S} p_{j}\right\}$.
- The sets B_{i} are disjoint, and $\cup_{i} B_{i}=[m]$.

Prove that a Walrasian equilibrium exists for v_{1}, \ldots, v_{n} if and only if the optimum of the LP relaxation below (called the configuration $L P$) is achieved at an integral point (i.e. where each $x_{i, S} \in\{0,1\}$).

$$
\begin{gathered}
\max \sum_{i} \sum_{S} v_{i}(S) \cdot x_{i, S} \\
\forall i, \sum_{S} x_{i, S}=1 \\
\forall j, \sum_{S \ni j} \sum_{i} x_{i, S} \leq 1 \\
\forall i, S, x_{i, S} \geq 0 .
\end{gathered}
$$

Finally, provide an example of two valuation functions v_{1}, v_{2} over two items where a Walrasian equilibrium doesn't exist.

[^2]
[^0]: ${ }^{1}$ We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.

[^1]: ${ }^{2}$ If you need a refresher on these definitions, check out the cheatsheet. Recall in particular that the $\operatorname{CDF} F_{E}(x):=$ $\operatorname{Pr}_{X \leftarrow E}[X<x]$, and therefore $1-F_{E}(x):=\operatorname{Pr}_{X \leftarrow E}[X \geq x]$.

[^2]: ${ }^{3}$ Keep in mind, of course, that you will do an IW/thesis across an entire semester/year, and you are doing the extra credit in a week. Whether or not you make progress on the extra credit in a week is not the important part - it's whether or not you enjoy the process of tackling an extremely open-ended problem with little idea of where to get started.
 ${ }^{4}$ You may consult course resources for general refreshers on Linear Programming, but not for anything specific to this problem.

