
COS 445 - PSet 3

Due online Monday, March 25th at 11:59 pm.

Instructions:

• Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

• Submit your solution to each problem as a separate PDF to codePost. Please make sure
you’re uploading the correct PDFs to the correct locations!1 If you collaborated with other
students, or consulted an outside resource, submit a (very brief) collaboration statement as
well. Please anonymize your submission, although there are no repercussions if you forget.

• The cheatsheet gives problem solving tips, and tips for a “good proof” or “partial progress.”

• Please reference the course collaboration policy here.

For convenience, we restate some definitions used in this problem set.

1We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.
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Problem 1: Linear Programming (20 points, no collaboration)
Alice is trying to get enough oranges and bananas to host a fruit party. To successfully host a party
she needs at least 9 oranges and at least 5 bananas. Unfortunately, her local grocery story only
sells fruit in bundles. Bundle A costs 8 dollars and contains 7 oranges and 3 bananas. Bundle B
costs 9 dollars and contains 5 oranges and 7 bananas. Fortunately, the grocery story will allow
Alice to buy fractions of bundles (i.e. she can buy 2.5 bundle As). They will not allow Alice to buy
negative bundles (i.e. she cannot buy -1 bundle As and 3 bundle Bs).

Alice would like to buy xA bundle As and xB bundle Bs to guarantee she has at least 9
oranges and at least 5 bananas. Moreover, she would like to find the solution that minimizes her
dollars spent.

Part a (10 points)
Write a linear program whose solution is the optimal choice of xA, xB for Alice’s problem.

Part b (10 points)
Take the dual of the linear program from part a.
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Problem 2: An Algorithm for Nash (40 points)
A feasibility LP is an LP but without the objective function. That is, a feasibility LP is just a list
of inequalities (which might be written as ≤,≥ or =). A feasibility LP either outputs some x⃗ that
satisfies all the inequalities (if a solution exists), or outputs “no” if no such solution exists.

Part 0: Examples
Here are three examples of feasibility LPs, if you would find it helpful. If you feel that you under-
stand the definition, you should skip this section.

• Variables: x, y.

• Constraints:

1. 4x ≤ 2y.

2. 2x+ 8y ≥ 4.

3. x+ y = 0.

One solution to this feasibility LP is x = −10, y = 10. Another solution is x = −5, y = 5.
Another is x = −1, y = 1. Here is another example of a feasibility LP:

• Variables: x, y.

• Constraints:

1. 4x ≥ 2y.

2. 2x+ 8y ≥ 4.

3. x+ y = 0.

The solution to this feasibility LP is “infeasible.” That is, there is no (x, y) satisfying all three
equations.2 Here is one last example of a feasibility LP:

• Variables: xi, for i ∈ [n].

• Constraints:

1. xi ≥ 0, for all i ∈ [n].

2.
∑n

i=1 j · 2i · xi ≤ 2j , for all j ∈ [n].

One solution to this feasibility LP is xi = 0 for all i. Another solution is x1 = 1, xi = 0 for all
i > 1.

2To see this, add the first two equations together to get 6x+ 6y ≥ 4. Then, add −6 times the third equation to get
0 ≥ 4, which is a contradiction. Observe that if any x, y existed which satisfied all three equations, then such an x, y
would necessarily satisfy the sum of the first two plus −6 times the last one. But this equation is unsatisfiable, because
it is false.

3



Part a (25 points)
Consider a two-player (not-necessarily-zero-sum) game, where each player has n pure actions la-
beled {1, . . . , n}. The payoff to player i when player 1 uses pure action x and player 2 uses pure
action y is pi(x, y).

Fix a subset S1 ⊆ [n] of pure actions for player 1, and a subset S2 ⊆ [n] of pure actions for
player 2. Write a feasibility LP to determine whether there exists a mixed strategy z⃗ for player one,
and w⃗ for player two, for this game which satisfies all four of the following properties (and prove
that your feasibility LP is correct, even if your proof is brief):

1. Every pure action in S1 is a best response for player 1 to w⃗ (pure actions not in S1 may or
may not be best responses).

2. In z⃗, player 1 only uses pure actions in S1, and does not use pure actions /∈ S1.

3. Every pure action in S2 is a best response for player 2 to z⃗ (pure actions not in S2 may or
may not be best responses).

4. In w⃗, player 2 only uses pure actions in S2, and does not use pure actions /∈ S2.

If it helps to be explicit, you are given as input: pi(x, y) for both players i ∈ {1, 2} and all
x, y ∈ [n], and S1, S2 ⊆ [n]. These are fixed, and not variables. Your goal is to produce a feasibility
LP, which will output an (z⃗, w⃗) satisfying the above constraints if one exists, or output “infeasible”
if it doesn’t.

Part b (15 points)
Design an exponential time (in n) algorithm to find a Nash equilibrium in two-player games with n
actions. You may use without proof the fact that linear programs can be solved in polynomial time.
You may also use without proof the fact that Nash equilibria always exist.

Hint: Your proof should somewhere need to assume that Nash equilibria always exist, as otherwise
you would be proving Nash’s theorem!

Hint: If your solution to part b makes use of your solution to part a, your proof should also
somewhere need to actually use properties of the particular LP you wrote in part a. Otherwise,
your same proof would “work” even if the LP in part a were always infeasible!
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Problem 3: Biased Information Cascades (60 points)
I have an urn. Into the urn I put one red ball and one blue ball. I put a third ball in that is red
with probability p and blue with probability 1 − p. One at a time, participants draw a ball from
the urn, see its color, and guess whether the urn has more red balls or blue balls (and then put it
back). Recall that partipants see their own draw, and all previous guesses (but not previous draws).
Participants are fully rational, trying to guess correctly, and know that every other participant is
fully rational. Note that when p = 1/2, this is exactly the model from Lecture 11.

Recall the following definition from Lecture 11:

Definition 1 (Information Cascade). Say that player i’s draw is revealed if, based on the infor-
mation available to player i, they would guess the color of their draw (i.e. if it were red, they’d
guess red. If it were blue, they’d guess blue). Say that player i’s draw is ignored if, based on the
information available to player i, they would make the same guess no matter their draw (i.e. they
would guess red no matter what).

An information cascade is when there exists a player i such that all draws ≥ i are ignored.

Hint: For all parts, if you are stuck, you may want to revisit Lecture 11 for the case where p = 1/2
and follow that outline. But you should also be aware that while the high-level outline is similar,
“the math” may look different.

Note: It is OK if you make an off-by-one error in the definition of when a cascade starts. Please
don’t stress about this aspect.

Part a (10 points)
Define Cp(t) to be the probability that an information cascade occurs by time t when the bias is p
(that is, Cp(t) is the probability that player t ignores their draw).

When p > 2/3, what is Cp(t)?

Note: You should provide an answer for all t. For this range of p, the answer does not depend on p.

Part b (10 points)
When p > 2/3, conditioned that a cascade occurs, what is the probability that the cascade is red
(note this is not asking the probability the cascade is correct)?

Note: The answer in this range is just a number, independent of p.

Part c (20 points)
When p ∈ (1/2, 2/3), what is Cp(t)?

Note: You should provide an answer for all t and all p ∈ (1/2, 2/3). The answer has a simple form
when t is odd, and a different simple form when t is even.
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Part d (20 points)
When p ∈ (1/2, 2/3), conditioned that a cascade occurs, what is the probability that the cascade is
red (note this is not asking the probability the cascade is correct)?

Note: The answer depends on p, but it is a simple function of p.
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Extra Credit: Another Algorithm for Nash
Recall that extra credit is not directly added to your PSet scores, but will contribute to your partic-
ipation. Some extra credits are quite challenging. We do not suggest attempting the extra credit
problems for the sake of your grade, but only to engage deeper with the course material. If you are
interested in pursuing an IW/thesis in CS theory, the extra credits will give you a taste of what that
might be like.3

For this problem, you may collaborate with any students. You may not consult course resources
or external resources. In this problem we will guide you through the proof of a well-known result,
so you should not copy the proof from one of the course texts (nor should you try to find a proof
from external sources). You must follow the guide below (and not provide an alternative proof).

Consider any symmetric two-player game. That is, p1(x, y) = p2(y, x) for all x, y. Consider
also the following system of inequalities. We’ll refer to this as the Lemke-Howson Polytope.

• Variables x1, . . . , xn.

• (Non-negativity) xi ≥ 0 for all i.

• (Responsiveness)
∑

j xjp1(i, j) ≤ 1.

Part a
Say that an action i is covered in x⃗ if either the non-negativity constraint is tight (i.e. xi = 0) or
the Responsiveness constraint is tight (i.e.

∑
j xjp1(i, j) = 1), or both. Prove that if x⃗ is inside the

Lemke-Howson polytope, and x⃗ ̸= 0, and all actions i are covered in x⃗, then x⃗/|x⃗|1 is a symmetric
Nash equilibrium (that is, x⃗/|x⃗|1 is a best response to itself).

Part b
For this part, you should assume that any set of n equations taken above have a solution, and that
this solution is unique.

The Lemke-Howson algorithm starts from the point 0⃗ and repeatedly pivots. That is, the current
point will always have exactly n tight constraints. The pivot will pick one of these constraints and
“relax” it (keeping the other n − 1 tight). A new constraint will become tight, and this will be the
new point (you do not need to prove that this procedure is well-defined).

From 0⃗, the pivot rule simply picks an arbitrary tight constraint to relax (let’s say x1 = 0). This
causes a new constraint to become tight. If it’s the 1st Responsiveness constraint, then by Part a
we’ve found a Nash and are done! If not, then we have exactly one double-covered action. That is,
there is some action i such that the non-negativity and Responsiveness constraints are both tight.
We pick the non-negativity constraint for i to relax next.

In general, for our current point x⃗ ̸= 0⃗, if there is no double-covered action we terminate (and
hope that it’s a Nash and not back at 0⃗). If there’s a double-covered action, it’s because we just
made one of the constraints for i tight. So relax the other one and continue.

Prove that the Lemke-Howson algorithm will never revisit a vertex y⃗ without first revisiting
the origin. You may use without proof the fact that if z⃗ pivots to w⃗ when constraint C is relaxed,

3Keep in mind, of course, that you will do an IW/thesis across an entire semester/year, and you are doing the extra
credit in a week. Whether or not you make progress on the extra credit in a week is not the important part — it’s
whether or not you enjoy the process of tackling an extremely open-ended problem with little idea of where to get
started.
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causing constraint D to become tight, then w⃗ pivots to z⃗ when constraint D is relaxed, causing
constraint C to become tight.

Part c
Prove that the Lemke-Howson algorithm cannot ever return to 0⃗. Conclude that the Lemke-Howson
algorithm finds a Nash after at most

(
2n
n

)
pivots.

Hint: You may want to prove that the algorithm terminates as soon as 1 becomes covered.
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