
COS 445 - PSet 1

Due online Monday, February 12th at 11:59 pm

Instructions:

• Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

• Submit your solution to each problem as a separate PDF to codePost. Please make sure
you’re uploading the correct PDFs!1 If you collaborated with other students, or consulted
an outside resource, submit a (very brief) collaboration statement as well. Please anonymize
your submission, although there are no repercussions if you forget.

• The cheatsheet gives problem solving tips, and tips for a “good proof” or “partial progress.”

• Please reference the course collaboration policy here.

For convenience, we restate some definitions used in this problem set.

Definition 1 (Pareto-Optimal). A matching is pareto-optimal if there is no other matching such
that everyone is at least as happy with their partners, and one party is strictly happier. That is,
a matching M is pareto-optimal if for all other matchings M ′ ̸= M , there is some student s who
strictly prefers their partner in M to their partner in M ′ (M(s) ≻s M ′(s)), or some university u
who strictly prefers their partner in M to their partner in M ′ (M(u) ≻u M ′(u)).2

Definition 2 (Blocking Pair). A student and university form a blocking pair for a matching M if:

• s strictly prefers u to her match in M (u ≻s M(s)).

• u strictly prefers s to their match in M (s ≻u M(u)).

Recall that a matching is stable if there do not exist any blocking pairs.

Definition 3 (Incentive Compatible). A matching algorithm is incentive compatible (we will also
interchangeably refer to this property with the term strategy-proof) for students if it satisfies the
following property:

• For any student s, and any real preference ≻s, let ≻′
s be some other preference, and denote

by ≻⃗′ the 2n preferences ≻1, . . . ,≻s−1,≻′
s,≻s+1, . . . ,≻2n.

• For all s, all ≻⃗ and all ≻′
s, M(s; ≻⃗) ⪰s M(s; ≻⃗′

).

That is, no matter what preferences are reported by the universities and other students, student s is
at least as happy to report their true preferences as any potential lie (and this holds for all students).

1We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.

2Note that because everyone has strict preferences over the other side, that the only way for everyone to be equally
happy is if M = M ′.

1

https://www.cs.princeton.edu/courses/archive/spring24/cos445/files/cheatsheet.pdf
https://www.cs.princeton.edu/courses/archive/spring24/cos445/files/infosheet.pdf


Problem 1: Unique Stable Matchings (20 points, no collabora-
tion)
Let there be n students and n universities, each with capacity one. Recall that a list of 2n prefer-
ences, ≻⃗ = ⟨≻1, . . . ,≻2n⟩ defines a stable matching instance. Consider an instance ≻⃗ where every
student has exactly the same (strict) preference ordering over universities. That is, for all students
i, j, ≻i = ≻j , but you may not make any assumptions on the university preferences.

Prove that, in any instance ≻⃗ where every student has the same strict preferences, that there is
a unique stable matching for ≻⃗. That is, there is a single matching M that is stable for ≻⃗, and any
other matching M ′ ̸= M is unstable for ≻⃗.

2



Problem 2: Other matching algorithms (40 points)
In this problem, we’ll consider the behavior of algorithms other than deferred acceptance for the
standard two-sided stable matching problem. For each of the following two algorithms, and each
of the following four statements, prove the statement or find (and analyze) a counterexample. You
should assume that there are n students and n universities, each university has one slot (and each
student wants one university), and all preferences are strict.

i. The algorithm always outputs a Pareto-optimal matching.

ii. The algorithm always outputs a stable matching.

iii. The algorithm is incentive-compatible for each student (that is, no student can ever benefit
from misreporting their preferences).

iv. The algorithm is incentive-compatible for each university (that is, no university can ever
benefit from misreporting their preferences).

Part a: Serial dictatorship (20 points)
For better or worse, the following algorithm treats the stable matching problem like a housing
lottery:

1. Initialize a temporary matching M := ∅.

2. Pick the lexicographically next student s who is unmatched in M .

3. Match s to her favorite university that isn’t matched in M .

4. Repeat from step 2 until all students are matched.

Part b: Weighted matching (20 points)
Noticing the superficial similarities between the stable matching problem and bipartite matching,
we might be tempted to turn the former into an instance of the latter. We might end up with an
algorithm like this:

1. Define Rs(u), the rank of u for s, to be the number of universities that s prefers to u. Simi-
larly, define Ru(s), the rank of s for u, to be the number of students that u prefers to s.

2. Define the weight wsu of the edge (s, u) to be Rs(u) +Ru(s).

3. Output a minimum-weight perfect matching in the complete bipartite graph with edge weights
w⃗.3

3How to break ties is entirely up to you: If you choose to write a proof, you may break ties however you like. If
you choose to write a counterexample, you may also break ties however you like.

3



Problem 3: The stability of greed (40 points)
Suppose there are n students (who each want one university), and n universities with one slot each.
Now, let A be an n × n matrix with positive real entries (Aij ∈ R+ for all i, j), that additionally
satisfies the following conditions:

• For all rows i, the n entries of A in row i are all distinct (Aij ̸= Aik for all i, and j ̸= k).

• For all columns j, the n entries of A in column j are all distinct (Aij ̸= Akj for all j, and
i ̸= k).

We now define a stable matching instance so that the students’ and universities’ preferences are
formed based on A.

• For university i, let ik denote the column of the kth largest entry of row i. Then university i
prefers students in the following order: i1 ≻ i2 ≻ . . . ≻ in.

• For student j, let jk denote the row of the kth largest entry of column j. Then student j
prefers universities in the following order : j1 ≻ j2 . . . ≻ jn.

So for example, if A =

[
3 2
1 4

]
, then university 1 prefers student 1 to 2, and university 2 prefers

student 2 to 1. Similarly, student 1 prefers university 1 to 2 and student 2 prefers university 2 to 1.

Part a: Greedy works! (15 points)
Consider the following greedy algorithm, henceforth referred to as GREEDY:

1. Let ai,j be the largest entry in the matrix A (in case of a tie, choose the entry with smaller i).

2. Match university i with student j.

3. Update A by setting ai,k := −1 for all k, and ak,j := −1 for all k (i.e. remove row i and
column j from future consideration because all “untouched” entries are positive).

4. Repeat until all entries in A are −1.

Show that the matching output by GREEDY is stable. You do not need to prove that GREEDY
outputs a matching, that it terminates, or analyze its runtime.

Part b: Greedy is all that works! (15 points)
Show that the matching output by GREEDY is the unique stable matching. In other words, prove
that all other matchings are not stable.

Part c: But it’s not perfect (10 points)
Provide an example of an A such that the matching returned by GREEDY is not the maximum
weight matching of the underlying bipartite graph. More specifically, if M denotes a matching
from [n] to [n], define the weight of M with respect to A as

∑
iAi,M(i). Construct an A such that

there exists a matching M whose weight exceeds the weight of the matching returned by GREEDY.

4



Extra Credit: Almost Unique Stable Matchings
Recall that extra credit is not directly added to your PSet scores, but will contribute to your partic-
ipation. Some extra credits are quite challenging. We do not suggest attempting the extra credit
problems for the sake of your grade, but only to engage deeper with the course material. If you are
interested in pursuing an IW/thesis in CS theory, the extra credits will give you a taste of what that
might be like.4

Consider an instance with n students and n universities where student preferences are uniformly
random, and university preferences are arbitrary. However, instead of a full preference ordering
over all n universities, each student truncates their preferences at the top c = O(1) universities
(that is, they prefer to be unmatched rather than partner with a school outside their top c).

Say that a university is uniquely stable for this instance if they have the same partner in all stable
matchings (where “unmatched” counts as a partner). Prove that the expected number of uniquely
stable universities is n− o(n).5

This is a long problem, and the following hints break down the key steps. If you can clearly
state and prove concrete steps (e.g. clearly state claims suggested by some of the hints, and prove
them), you will get partial extra credit.

Hint 1: You may want to prove the following fact first. Let M,M ′ be any two stable matchings.
Then every student who is matched in M is also matched in M ′ (and vice versa). Every university
that is matched in M is also matched in M ′ (and vice versa).

Hint 2: You may also want to prove the following: Let M be output by student-proposing
deferred acceptance (i.e. each student stops applying if they are rejected by all of their top c
schools), and let M(u) = s. Now consider modifying u’s preferences by “removing” s and all s′

that u likes less than s. That is, u declares that they would rather be unmatched that matched to s
or anyone below s. Then any matching M ′ where M ′(u) ̸= M(u) is stable for the new preferences
if and only if it is stable for the original preferences.

Hint 3: You may next want to prove the following fact using Hints 1 and 2. Let M be output by
student-proposing deferred acceptance (where each student only proposes to a university to which
they apply), and let M(u) = s. Now consider modifying u’s preferences by “removing” s and all
s′ that u likes less than s. That is, u declares that they would rather be unmatched that matched to
s or anyone below s. Let M ′ denote the matching output by student-proposing deferred acceptance
with this modified preference (and all others the same). If u is unmatched in M ′, then u is matched
to s in every stable matching.

Hint 4: To start wrapping up, you may want to use the fact that Student-Proposing Deferred
Acceptance outputs the same matching, independent of the order in which students propose (this
is a corollary of a theorem from lecture). In particular, you may want to choose the order in which
students propose to make use of the earlier hints.

Hint 5: Finally, you may use the following fact without proof:6 imagine throwing k balls into n
bins uniformly at random without replacement, and then repeating this procedure n times indepen-
dently (so we pick n uniformly random lists of k distinct bins). Then with probability 1 − e−Ω(n),
at least n · e−k/4 bins are empty.

4Keep in mind, of course, that you will do an IW/thesis across an entire semester/year, and you are doing the extra
credit in a week. Whether or not you make progress on the extra credit in a week is not the important part — it’s
whether or not you enjoy the process of tackling an extremely open-ended problem with little idea of where to get
started.

5Observe that this means it barely matters which side proposes in this model because almost everyone has the same
partner regardless.

6This fact is oddly stated, because it is tailored to this problem to remove the need for calculations.

5


