
Concurrency in Go
February 2024



Go Resources

https://tour.golang.org/list

https://play.golang.org

https://gobyexample.com

2

https://tour.golang.org/list
https://play.golang.org
https://gobyexample.com/


Today’s Precept…

1. Two synchronization mechanisms
a. Locks
b. Channels

2. Mapreduce

3



Two synchronization mechanisms

Locks - limit access to a critical section

Channels - pass information across processes using a queue

4



Example: Bank account

Thread 1

100
Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 110

b = b + 10

Write b = 120120

5

Thread 2



Example: Bank account

100
Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10

Write b = 110110

6

Thread 1 Thread 2



What went wrong?
Changes to balance are not atomic

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

7



What went wrong?
Suppose the function is called in two threads, with the Thread 1 chosen to run first.

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

8

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2



What went wrong?
Suppose the function is called in two threads, with the Thread 1 chosen to run first.

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

9

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2



What went wrong?

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

10

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2

Then, an interrupt happens, and the OS scheduler selects Thread 2 to run.



What went wrong?

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

11

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2

Thread 1 did not write new balance to shared storage, so Thread 2 reads the old value. 



What went wrong?

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

12

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}

Thread 1 Thread 2

This is called a race condition.



Solution - Locks

func Deposit(amount) {

lock balanceLock

read balance

balance = balance + amount

write balance

unlock balanceLock

}

Critical section

13

Changes to balance are now atomic.

func Deposit(amount) {

read balance

balance = balance + amount

write balance

}



Good Video Explanations

14

Race Conditions:
https://www.youtube.com/watch?v=FY9livorrJI

Deadlocks:
https://www.youtube.com/watch?v=LjWug2tvSBU

https://www.youtube.com/watch?v=FY9livorrJI
https://www.youtube.com/watch?v=LjWug2tvSBU


Locks in Go

package account

import "sync"

type Account struct {
balance int
mu sync.Mutex

}

func (a *Account) Deposit(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.mu.Lock()
defer a.mu.Unlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance -= v

}

15



Locks in Go

package account

import "sync"

type Account struct {
balance int
mu sync.Mutex

}

func (a *Account) Deposit(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.mu.Lock()
defer a.mu.Unlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.mu.Lock()
defer a.mu.Unlock()
a.balance -= v

}

16



Read Write Locks in Go

package account

import "sync"

type Account struct {
balance int
rwLock sync.RWMutex

}

func (a *Account) Deposit(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.rwLock.RLock()
defer a.rwLock.RUnlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance -= v

}

17



Read Write Locks in Go

package account

import "sync"

type Account struct {
balance int
rwLock sync.RWMutex

}

func (a *Account) Deposit(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance += v

}

func NewAccount(init int) Account {
return Account{balance: init}

}

func (a *Account) CheckBalance() int {
a.rwLock.RLock()
defer a.rwLock.RUnlock()
return a.balance

}

func (a *Account) Withdraw(v int) {
a.rwLock.Lock()
defer a.rwLock.Unlock()
a.balance -= v

}

18



Two Solutions to the Same Problem
Locks:

Multiple threads can reference same 
memory location

Use lock to ensure only one thread is 
updating it at any given time

Channels:

Data item initially stored in channel

Threads must request item from 
channel, make updates, and return 
item to channel

T1 T2 T3

0x1000: 100

T1 T2 T3

100
C

100

110 19



Bank Account Code (using channels)

package account

type Account struct {
// Fill in Here

}

func NewAccount(init int) Account {
// Fill in Here

}

func (a *Account) CheckBalance() int {
// What goes Here?

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
// ???

}

20



Bank Account Code (using channels)

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

func (a *Account) CheckBalance() int {
// What goes Here?

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
// ???

}

21



Bank Account Code (using channels)

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
// ???

}

func (a *Account) Deposit(v int) {
//???

} 

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

22



Bank Account Code (using channels)

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
bal := <-a.balance
a.balance <- (bal - v)

}

func (a *Account) Deposit(v int) {
//???

} 

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

23



Bank Account Code (using channels)

func (a *Account) CheckBalance() int {
bal := <-a.balance
a.balance <- bal
return bal

}

func (a *Account) Withdraw(v int) {
bal := <-a.balance
a.balance <- (bal - v)

}

func (a *Account) Deposit(v int) {
bal := <-a.balance
a.balance <- (bal + v)

} 

package account

type Account struct {
balance chan int

}

func NewAccount(init int) Account {
a := Account{

balance: make(chan int, 1)
}
a.balance <- init
return a

}

24



Go channels

Channels also allow us 
to safely communicate 
between goroutines

// Launch workers

for i := 0; i < numWorkers; i++ {

go func() {

doWork()

}()

}

result := make(chan int, numWorkers)

// Wait until all worker threads have finished

for i := 0; i < numWorkers; i++ {

handleResult(<-result)

}

fmt.Println("Done!")

result <- i

25



Go channels

Easy to express 
asynchronous RPC

Awkward to express 
this using locks

// Send query to all servers

for i := 0; i < numServers; i++ {

go func() {

resp := // ... send RPC to server

}()

}

result := make(chan int, numServers)

// Return as soon as the first server responds

handleResponse(<-result)

result <- resp

26



Select statement

select allows a goroutine to wait on multiple channels at once

for {
select {

case money := <-dad:
buySnacks(money)

case money := <-mom:
buySnacks(money)

}

}

27



Select statement

select allows a goroutine to wait on multiple channels at once

for {
select {

case money := <-dad:
buySnacks(money)

case money := <-mom:
buySnacks(money)

case default:
starve()
time.Sleep(5 * time.Second)

}

}

28



Handle timeouts using select
// Asynchronously request an answer 
// from server, timing out after X 
// seconds
result := make(chan int)
timeout := make(chan bool)

// Ask server
go func() {

response := // ... send RPC
result <- response

}()

// Start timer
go func() {

time.Sleep(5 * time.Second)
timeout <- true

}()

// Wait on both channels
select {

case res := <-result:
handleResult(res)

case <-timeout:
fmt.Println("Timeout!")

}

29



Exercise: Implementing a mutex using channels
type Lock struct {

// ???
}

func NewLock() Lock {
// ???

}

func (l *Lock) Lock() {
// ???

}

func (l *Lock) Unlock() {
// ???

}

30



Exercise: Implementing a mutex using channels
type Lock struct {

ch chan bool
}

func NewLock() Lock {
// ???

}

func (l *Lock) Lock() {
// ???

}

func (l *Lock) Unlock() {
// ???

}

31



Exercise: Implementing a mutex using channels
type Lock struct {

ch chan bool
}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true
return lock

}

func (l *Lock) Lock() {
// ???

}

func (l *Lock) Unlock() {
// ???

}
32



Exercise: Implementing a mutex using channels
type Lock struct {

ch chan bool
}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true
return lock

}

func (l *Lock) Lock() {
<-lock.ch

}

func (l *Lock) Unlock() {
// ???

}
33



Exercise: Implementing a mutex using channels
type Lock struct {

ch chan bool
}

func NewLock() Lock {
lock := Lock{make(chan bool, 1)}
lock.ch <- true
return lock

}

func (l *Lock) Lock() {
<-lock.ch

}

func (l *Lock) Unlock() {
lock.ch <- true

}
34



Mutexes vs. Semaphores
Mutexes allow 1 process to enter 
critical section at a time. Allows at 
most n concurrent accesses

Semaphores allow up to N processes 
to enter critical section simultaneously

Study Rooms

1

2

3

7

6

5
4

35



Outline
Two synchronization mechanisms

Locks

Channels

Mapreduce

36



Application: Word count

How much wood would a woodchuck chuck 
if a woodchuck could chuck wood?

how: 1, much: 1, wood: 2, would: 1, a: 2, woodchuck: 2, 

chuck: 2, if: 1, could: 1

37



Application: Word count
Locally: tokenize and put words in a hash map

How do you parallelize this?

Partition the document into n partitions.

Build n hash maps, one for each partition

Merge the n hash maps (by key)

38



How do you do this in a distributed environment?

39



When in the Course of human events, it 

becomes necessary for one people to 

dissolve the political bands which have 

connected them with another, and to assume, 

among the Powers of the earth, the separate 

and equal station to which the Laws of 

Nature and of Nature's God entitle them, a 

decent respect to the opinions of mankind 

requires that they should declare the 

causes which impel them to the separation.

Input document

40



When in the Course of human events, it 

becomes necessary for one people to 

dissolve the political bands which have 

connected them with another, and to assume,

among the Powers of the earth, the separate 

and equal station to which the Laws of

Nature and of Nature's God entitle them, a 

decent respect to the opinions of mankind

requires that they should declare the causes 

which impel them to the separation.

Partition

41



When in the Course of human events, it 

becomes necessary for one people to 

dissolve the political bands which have 

connected them with another, and to assume,

among the Powers of the earth, the separate 

and equal station to which the Laws of

Nature and of Nature's God entitle them, a 

decent respect to the opinions of mankind

requires that they should declare the causes 

which impel them to the separation.

Partition

42

Shard 1 Shard 1

Shard 2
Shard 2

Shard 3
Shard 3

Shard 4 Shard 4

Shard 5
Shard 5



When in the Course 

of human events, it 

becomes necessary 

for one people to

dissolve the political 

bands which have 

connected them with 

another, and to assume,

among the Powers of the 

earth, the separate and 

equal station to which 

the Laws of

Nature and of Nature's 

God entitle them, a 

decent respect to the 

opinions of mankind

requires that they 

should declare the 

causes which impel them 

to the separation.

43



when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2, 

political: 1, bands: 1, 

which: 1, have: 1, 

connected: 1, them: 1 ...

among: 1, the: 2, 

powers: 1, of: 2, 

earth: 1, separate: 1, 

equal: 1, and: 1 ...

nature: 2, and: 1, of: 2, 

god: 1, entitle: 1, them: 1, 

decent: 1, respect: 1, 

mankind: 1, opinion: 1 ...

requires: 1, that: 1, 

they: 1, should: 1, 

declare: 1, the: 1, 

causes: 1, which: 1 ...

Compute word counts locally

44



when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2, 

political: 1, bands: 1, 

which: 1, have: 1, 

connected: 1, them: 1 ...

among: 1, the: 2, 

powers: 1, of: 2, 

earth: 1, separate: 1, 

equal: 1, and: 1 ...

nature: 2, and: 1, of: 2, 

god: 1, entitle: 1, them: 1, 

decent: 1, respect: 1, 

mankind: 1, opinion: 1 ...

requires: 1, that: 1, 

they: 1, should: 1, 

declare: 1, the: 1, 

causes: 1, which: 1 ...

Compute word counts locally

Now what…
How to merge results?

45



Don’t merge

Merging results computed locally

— requires additional computation for correct results

— what if data is too big? Too slow…

Partition key space among nodes in cluster (e.g. [a-e], [f-j], [k-p] ...)

1. Assign a key space to each node
2. Split local results by the key spaces
3. Fetch and merge results that correspond to the node’s key space

Send everything to one node

Several options

46



when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2, 

political: 1, bands: 1, 

which: 1, have: 1, 

connected: 1, them: 1 ...

among: 1, the: 2, 

powers: 1, of: 2, 

earth: 1, separate: 1, 

equal: 1, and: 1 ...

nature: 2, and: 1, of: 2, 

god: 1, entitle: 1, them: 1, 

decent: 1, respect: 1, 

mankind: 1, opinion: 1 ...

requires: 1, that: 1, 

they: 1, should: 1, 

declare: 1, the: 1, 

causes: 1, which: 1 ...

47



when: 1, the: 1,

in: 1, it: 1, human: 1,

course: 1, events: 1,

of: 1

bands: 1, dissolve: 1,

connected: 1, have: 1,

political: 1, the: 1,

them: 1, which: 1

among: 1, and: 1,

equal: 1, earth: 1,

separate: 1, the: 2,

powers: 1, of: 2

nature: 2, of: 2,

mankind: 1, opinion: 1,

entitle: 1, and: 1,

decent: 1, god: 1,

them: 1, respect: 1, 

causes: 1, declare: 1,

requires: 1, should: 1,

that: 1, they: 1, the: 1,

which: 1

Split local results by key space

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

48



All-to-all shuffle

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

49



when: 1, the: 1, that: 1, 

they: 1, the: 1, which: 1, 

them: 1, the: 2, the: 1, 

them: 1, which: 1

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 1,

equal: 1, earth: 1, entitle: 1,

and: 1, decent: 1, causes: 1,

declare: 1

powers: 1, of: 2,

nature: 2, of: 2,

mankind: 1, of: 1,

opinion: 1, political: 1

god: 1, have: 1, 

in: 1, it: 1, 

human: 1,

requires: 1, should: 1, 

respect: 1, separate: 1

Note the duplicates...

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

50



when: 1, the: 4, 

that: 1, they: 1, 

which: 2, them: 2

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 2,

equal: 1, earth: 1,

entitle: 1, decent: 1,

causes: 1, declare: 1

powers: 1, of: 5,

nature: 2, mankind: 1,

opinion: 1, political: 1

god: 1, have: 1, 

in: 1, it: 1, 

human: 1,

requires: 1, should: 1, 

respect: 1, separate: 1

Merge results received from other nodes

51



Mapreduce
Partition dataset into many chunks

Map stage: Each node processes one or more chunks locally

Reduce stage: Each node fetches and merges partial results from all other nodes

52



Mapreduce Interface

map(key, value) -> list(<k’, v’>)

Apply function to (key, value) pair

Outputs list of intermediate pairs 

reduce(key, list<value>) -> <k’, v’>

Applies aggregation function to values

Outputs result

53



Mapreduce: Word count

map(key, value):
// key = document name
// value = document contents
for each word w in value: 

emit (w, 1)

reduce(key, values): 
// key = the word
// values = number of occurrences of that word
count = sum(values)
emit (key, count)

54



55

map combine shuffle reduce

Mapreduce: Word count



Why is implementing MapReduce hard?

● Failure is common
○ Even if each machine is available p = 99.999% of the time, a datacenter with 

n = 100,000 machines still encounters failures (1-pn) = 63% of the time

● Data skew causes unbalanced performance across cluster

➔ Problems occur at scale. 
➔ Hard to debug!

56



2004

MapReduce

2007 2011 2012 2015

Dryad

57


