
Distributed Snapshots
Spring 2024

1

Dog moves

N1 N2 N3 N4

Distributed snapshots are hard
Must ensure state is not duplicated across the cluster (we only want one dog)

Must ensure state is not lost across the cluster (we still want the dog there)

Thus we must carefully consider how and when exactly to record state.

What is a Global Snapshot?
● A global snapshot captures the

global state of a distributed system:
○ Local state of each process within the

distributed system
○ Local state of each communication

channel
● These local states are

instantaneous
○ e.g messages in transit from one node

to another only exist in transit for a few
milliseconds or less

A B

C

m2m1

m
3

m
4

m
5

5

Global Snapshots are Useful
● Checkpointing

○ Recover more quickly after failures
● Garbage Collection

○ Remove objects that are not referenced any more by other objects/processes at any other
servers

● Deadlock Detection
○ Examine the global application state and identify any deadlocks, useful in transactional DB

systems
● And many others …

6

System Model
● N processes in the system

○ Each process keeps track of some state
● There are two unidirectional communication channels between each pair of

processes P and Q
○ FIFO-ordered (i.e first-in-first-out)
○ Message arrives intact and is unduplicated
○ Each channel also has some state

● No failures

7

Messages and States
● What are the messages?

○ Application messages that differ across systems (e.g “sending $10 from A to B”, “read value at
memory address X and write back with a new value”)

○ Special messages (e.g marker message) that should not interfere with application messages

● What are the states?
○ Process state: application-defined state, or the classic notion of state which includes heap,

registers, program counters and etc
○ Channel state: the set of messages inside

● Tips for Assignment 2
○ See *.top, *.events , *.snap files under ./test_data to understand what states and

messages mean in this assignment
○ Read test_common.go to understand the syntax of the above files, and their relationships

with the simulator 8

Distributed Snapshot
“Distributed Snapshots: Determining Global States of Distributed Systems” 1985,
by K. Mani Chandy and Leslie Lamport

Key Idea: Servers send marker messages to each other

Marker messages

1. Mark the beginning of the snapshot process on the server

2. Act as a barrier (stopper) for recording messages

9

https://lamport.azurewebsites.net/pubs/chandy.pdf

Chandy-Lamport Algorithm

Any process can initiate the snapshot
- Record local state
- Create marker messages and send them to all outbound channels
- Start recording messages from all incoming channels

10

Chandy-Lamport Algorithm Continued
When receiving a marker message from channel C
If this is the first marker message that this process has even seen:

- Record the local state
- Record the state of C as “empty sequence”
- Send out the marker message on all outbound channels
- Start recording messages from all of its other incoming channels

If it has already seen a marker message (e.g. from some other channel)
- Record the state of C as the sequence of messages received since the process’s local

state has been recorded
- Stop recording messages on C (i.e done with recording the channel’s state)

See Section 3 of the original paper for more details 11

https://lamport.azurewebsites.net/pubs/chandy.pdf

Chandy-Lamport Algorithm Continued
When is the algorithm terminated?

- All processes have received marker messages (i.e have recorded their local states)
- All processes have received marker messages from all of their incoming channels (i.e

have recorded the local states of all channels)
- Both need to satisfy

What happens after the termination?
- Optional and out of the scope of Chandy-Lamport algorithm
- Usually, there will be a central server that collects local snapshots from all servers to

build a global snapshot (e.g the simulator in Assignment 2) and maybe run some
computations (e.g deadlock detection) on it

12

Token passing example 1

A B

1 Token 0 Tokens

13

Token passing example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

1 Token

14

Token passing example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker1 TokenM

15

Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token
M

16

Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

4. B receives marker,
starts snapshot

M

17

Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

4. B receives marker,
starts snapshot

5. A receives marker,
ends snapshotWe did not record the token message because B

received it before B started the snapshot process

18

Token passing example 2

A B

0 Tokens 1 Token

19

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

1 Token

20

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

1 Token

M

21

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

1 Token

M

22

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

4. B receives marker,
starts snapshot1 Token

M

23

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

4. B receives marker,
starts snapshot

5. A receives marker,
ends snapshot

1 Token

We recorded the token message because A received
it after it has already started the snapshot process

24

Token passing example 3

A B

C

M m2m1

M
m

4

m
3

m
6

m
5

Which messages are
definitely recorded*?

Which messages are
definitely not recorded?

Which messages might
be recorded?

* recorded as in-flight messages, i.e.,
as part of channel state rather than
process state

m
7

25

Which messages are
definitely recorded*?

Which messages are
definitely not recorded?

Which messages might
be recorded?

*recorded as in-flight messages

Token passing example 3

A B

C

M m2m1

M
m

4

m
3

m
6

m
5

m
7

m7

m1, m3

m2, m4, m5, m6

26

Assignment 2 Overview
● You will implement the Chandy-Lamport snapshot algorithm
● Application is a token passing system

○ Number of tokens must be preserved in your snapshots
● Implementation uses discrete time simulator to order events

○ Simulator manages servers and injects events into the system
○ Server implements the snapshot algorithm (See slides 10-12)

● Allow multiple active snapshot processes
○ E.g, The second snapshot can start before the first snapshot completes in the system

27

Assignment 2 Interfaces
func (sim *Simulator) Tick()

func (sim *Simulator) StartSnapshot(serverId string)

func (sim *Simulator) NotifySnapshotComplete(serverId string, snapshotId int)

func (sim *Simulator) CollectSnapshot(snapshotId int) *SnapshotState

● What kind of state does the simulator need to keep track of?
○ Time
○ Topology
○ Channels to signal the completion of snapshots
○ ...

28

Assignment 2 Interfaces
func (server *Server) SendToNeighbors(message interface{})

func (server *Server) SendTokens(numTokens int, dest string)

func (server *Server) HandlePacket(src string, message interface{})

func (server *Server) StartSnapshot(snapshotId int)

● What kind of state does the server need to keep track of?
○ Local state
○ Neighbors
○ Which channels received markers
○ Recorded messages
○ ...

29

A Note on Channels and Goroutines
● Using channels is easy, debugging them is hard…

Bullet-proof way: Keep track of how many things go in and go out

Always ask yourself: is this channel buffered?

● In general, don’t use locks or atomic operations with channels (awkward)
● Try not to nest goroutines (hard to reason about)

30

Assignment 2

Start Early ☺

Due March 1st (Friday) at 11:59pm!

31

