Time 2: Totally Ordered
Multicast & Vector Clocks

f| vET | NOV (8
TES | TAM
f| Ex | TVvM™ [

COS 418/518: Distributed Systems
Lecture 6

Wyatt Lloyd, Mike Freedman

Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction ledger database
resilient to whole-site failures

* Replicate the database, keep one copy in sf, one in nyc

San
Francisco

The consequences of concurrent updates

* Replicate the database, keep one copy in sf, one in nyc
 Client sends reads to the nearest copy
» Client sends update to both copies

—— e e -

~ertInconsistent replicas! §
i Updates should have been performed i
$1’0§ in the same order at each copy |

Totally-Ordered Multicast

———

* Client sends update to one replica sitej
* Replica assigns it Lamport timestamp G;. j

» Key idea: Place events into a sorted local queue
« Sorted by increasing Lamport timestamps

Example: P1’s Brm 1.2 < Timestamps
local queue: | [7o1

SF NY i Q1) What is bad about using

iorder a,b,d,c?
a) Add Alice to Bank P
i Q2) What are all the valid lamport |
b) Alice deposits $1000 | timestamp total orders of a—f? |

c) Remove Alice from Bank

d) Re-add Alice to Bank

e) Alice deposits $100 l I f) 1% interest payment

Physical time |

Totally-Ordered Multicast (A/most correct)

1. On receiving an update from client, broadcast to others (including yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
« Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast Amost correct)

 P1 queues $, P2 queues -:3$ %1.1 1.2 ” N

* P1 queues and ack’s
* P1 marks " fully ack’ed

* P2 marks " fully ack’ed

(Acks to self not shown here) \ 4

Totally-Ordered Multicast (“orrect version)

1. On receiving an update from client, broadcast to others (including yourself)

()
2] On receiving or processing an update:
a) Add it to your local queue, if received update

b) Broadcast an acknowledgement message to every replica (including yourself)
only from head of queue

. J

3. On receiving an acknowledgement:
« Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Corect version)

11 |12 11 L

|7

%

So, are we done?

* Does totally-ordered multicast solve the problem of multi-site
replication in general?

* Not by a long shot!

1. Our protocol assumed:
* No node failures
 No message loss
 No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

Lamport Clocks Review
Q:a—>b => LC(a) < LC(b)
Q:LC(a)<LC(b) => b-/->a (a—>boral|lb)

Q:allb => nothing

Lamport Clocks and Causality

« Lamport clock timestamps do not capture causality

« Given two timestamps C(a) and C(z), want to know whether
there’s a chain of events linking them:

a22b-2>..2y—>z

Vector clock: Introduction

* One integer can’t order events in more than one process

* S0, a Is a vector of integers, one entry for
each process in the entire distributed system

» Label event e with VC(e) = [c4, C5 ..., C.]
« Each entry ¢, is a count of events in process k that causally precede e

Vector clock: Update rules

e Initially, all vectors are [0, O, ..., 0]

 Two update rules:

1. For each local event on process i, increment local entry c,

2. If process j receives message with vector [d,, d, ..., d_]:
« Set each local entry ¢, = max{c,, d,}
* Increment local entry c;

Vector clock: Example
* All processes’ VCs start at [0, 0, 0]

* Applying local update rule

* Applying message rule
» Local vector clock piggybacks
on inter-process messages

P1| |P2| |P3

a $[1 ,0,0]
b ¢

[2,2,0]

d¢
)[9,}0])0 [2,2,2]

f

v v

Physical time |

Comparing vector timestamps
* Rule for comparing vector timestamps:
*V(a) = V(b) when a, = b, for all k
*V(a) < V(b) when a, < b, for all k and V(a) # V(b)

« Concurrency:
*V(a) || V(b) if a; < b; and a; > b;, some i, j

Vector clocks capture causality

* V(w) < V(z2) then there is a chain of events linked by
Happens-Before (=) between a and z

 V(a) || V(w) then there is no such chain of events between a and w

P1 P2 P3
[1,0.0lw 0[0,0,1]
[2,0,0] x

y [2,1,0]

z0[2,2,0]

Comparing vector timestamps

* Rule for comparing vector timestamps:
*V(a) = V(b) when a, = b, for all k
* They are the same event
*V(a) < V(b) when a, < b, for all k and V(a) # V(b)
a=—2>b

« Concurrency:
*V(a) || V(b) if a; < b; and a; > b;, some i, j
allb

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., eithera > zora|| z

Vector clocks: V(a) < V(z)
Conclusion:a 2 z

Vector clock timestamps precisely capture
happens-before relation (potential causality)

