
Time

COS 418/518: Distributed Systems
Lecture 5

Wyatt Lloyd , Mike Freedman

Today

1. The need for time synchronization

2. “Wall clock time” synchronization

3. Logical Time: Lamport Clocks

2

A distributed edit-compile workflow

• 2143 < 2144 è make doesn’t call compiler

3

Physical time à

Lack of time synchronization result
– a possible object file mismatch

1. Quartz oscillator sensitive to temperature, age,
vibration, radiation
• Accuracy ~one part per million

• (one second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays
• Best-effort: messages don’t always arrive

4

What makes time synchronization hard?

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
• Cristian’s algorithm, NTP

3. Logical Time: Lamport clocks

5

• UTC is broadcast from radio stations on land and satellite
(e.g., the Global Positioning System)

• Computers with receivers can synchronize their clocks with these
timing signals

• Signals from land-based stations are accurate to about
0.1−10 milliseconds

• Signals from GPS are accurate to about one microsecond
• Why can’t we put GPS receivers on all our computers?

6

Just use Coordinated Universal Time?

• Suppose a server with an accurate clock (e.g., GPS-receiver)
• Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
• Message delays will have outdated server’s answer

7

Synchronization to a time server

Client Server
Time of day?

Time ↓

2:50 PM

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of the
request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

4. Client locally timestamps its receipt
of the server’s response T4

8

Cristian’s algorithm: Outline
Client Server

Time ↓

T1

T2

T4

T1
request:

T3

T2,T3

response:

How can the client use these timestamps to synchronize
its local clock to the server’s local clock?

• Client samples round trip time (𝛿)
𝛿= 𝛿req + 𝛿resp = (T4− T1) − (T3− T2)

• But client knows 𝛿, not 𝛿resp

9

Cristian’s algorithm: Offset sample calculation
Client Server

Time ↓

T1

T2

T4

T1
request:

T3

T2,T3

response:

𝛿req

𝛿resp
Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock ßT3 + 𝛿resp

Client sets clock ßT3 + ½𝛿

• Clocks on different systems will always behave differently
• Disagreement between machines can result in undesirable behavior

• NTP clock synchronization
• Rely on timestamps to estimate network delays
• 100s 𝝁s−ms accuracy
• Clocks never exactly synchronized

• Often inadequate for distributed systems
• Often need to reason about the order of events

10

Clock synchronization: Take-away points

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
• Cristian’s algorithm, NTP

3. Logical Time: Lamport clocks

11

• A New York-based bank wants to make its transaction ledger database
resilient to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San
Francisco

12

• Replicate the database, keep one copy in sf, one in nyc
• Client sends reads to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed
in the same order at each copy

13

RFC 677 “The Maintenance of Duplicate
Databases” (1975)
• “To the extent that the communication paths can be made

reliable, and the clocks used by the processes kept close to
synchrony, the probability of seemingly strange behavior can
be made very small. However, the distributed nature of the
system dictates that this probability can never be zero.”

Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

• Insight: only the events themselves matter

15

Idea: Disregard the precise clock time
Instead, capture just a “happens before”
relationship between a pair of events

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

16

• Can observe event order at a single process
Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

a

b

17

1. If same process and a occurs before b, then a à b
Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

a

b

18

1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Defining “happens-before” (à)

P1 P2
P3

a

b
c

19

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Defining “happens-before” (à)

P1 P2
P3

a

b
c

20

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Defining “happens-before” (à)

P1 P2
P3

a

b
c

21

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Defining “happens-before” (à)

P1 P2
P3

a

b
c

22

Physical time ↓

• Not all events are related by à

• a, d not related by à so concurrent, written as a || d

Concurrent events

23

P1

a

b
c

P2
P3

Physical time ↓

d

• We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)

Lamport clocks: Objective

24

Plan: Tag events with clock times; use clock
times to make distributed system correct

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci ß Ci + 1

The Lamport Clock algorithm

P1
C1=0

a

b
c

P2
C2=0 P3

C3=0

25

Physical time ↓

1. Before executing an event a, Ci ß Ci + 1:

• Set event time C(a) ß Ci

The Lamport Clock algorithm

P1
C1=1

a

b
c

P2
C2=0 P3

C3=0C(a) = 1

26

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1:

• Set event time C(b) ß Ci

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

27

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1

2. Send the local clock in the message m

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

28

Physical time ↓

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=3 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

29

Physical time ↓

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
• This is called a total ordering of events

30

Order all these events

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C3=0

d

e

f

g

h

i

• Can totally-order events in a distributed system: that’s useful!
• We will see an application of Lamport clocks for totally-ordered

multicast next time

• But: while by construction, a à b implies C(a) < C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)

38

Take-away points: Lamport clocks

Can’t use Lamport timestamps to infer causal
relationships between events

