
Tying It All Together

COS 418/518: Distributed Systems
Lecture 22

Wyatt Lloyd, Mike Freedman

Back in Lecture 1…

Distributed Systems, Why?
• Or, why not 1 computer to rule them all?

• Failure => Fault Tolerance

• Limited computation/storage => Scalability

• Physical location => Availability,
Low Latency

Distributed Systems Goal

• Service with higher-level abstractions/interface
• e.g., database, programming model, …

• Hide complexity - Do “heavy lifting” so app
developer doesn’t need to
• Reliable (fault-tolerant)
• Scalable (scale-out)
• Strong guarantees (consistency and transactions)

• Efficiently
• Lower latency (faster interactions, e.g., page load)
• Higher throughput (fewer machines)

What We Learned
(Much of it at least, at a very high level)

Network communication

• How can multiple computers communicate?

• Networking stack solves this for us!

• We use it to build distributed systems, relying on
the guarantees it provides.

Remote Procedure Calls

• Additional layer on top of networking stack

• At least once – dealing with failures!

• At most once – ensuring correctness despite
concurrency and failures

Time, logical clocks

• Concurrency!

• Real time often inadequate
for distributed systems?

• Lamport clocks: A à B => LC(A) < LC(B)

• Vector clocks: A à B <=> VC(A) < VC(B)

Eventual Consistency, Bayou
• Favor availability above all else
• e.g., disconnected dropbox operation

• Eventual consistency

• Bayou system design
• Operation log (logical, not physical, replication)
• Causal consistency from log propagation and lamport

timestamps

Consistent Hashing & DHTs
• Goal: scale lookup state, lookup computation,

storage; fault tolerant

• Scale lookup state, lookup computation w/ Chord

• Scale storage with sharding

• Fault tolerance through replication, robust
protocols

Dynamo
• Favor availability above all + scalable storage

• Eventual consistency (really eventual)

• Zero-hop DHT on top of data sharded with
consistent hashing
• Virtual nodes enable better load balancing (improves

throughput), but design to still ensure fault tolerance

So far…
• Can build systems that are fault tolerant,

scalable, provide low latency, highly available

• But…

• Weak guarantees

Fault
Tolerant

Scalable Highly Available
& Low Latency

Guarantees

Bayou yes no yes causal
Dynamo yes yes yes eventual

Strong Guarantees +
Fault Tolerance
• Linearizability: acts just like 1 machine

processing requests 1 at a time!

• Replicated state machines:
• Log of operations, execute in order
• Primary-backup (and VM-FT)

• Special mechanism for failure detection
• React to failure

• Paxos, RAFT
• Built in failure detection using quorums (f+1 out of 2f+1)
• Mask non-leader failure

Fault
Tolerant

Scalable Highly Available
& Low Latency

Guarantees

Bayou yes no yes causal
Dynamo yes yes yes eventual
Paxos/RAFT yes no no linearizability

Impossibility Results Guide Us
• CAP: Must choose either availability of all

replicas or consistency between replicas

• PRAM: Must choose either low latency of
operations or consistency between replicas

Availability + Low Latency +
Scalability + Stronger Guarantees
• COPS provides causal consistency

• Stronger guarantees impossible w/ low latency
• Like a scalable Bayou

• Sharding to scale storage within a datacenter
• Geo-replicate data across datacenters

• Replication and sharding!

• New protocols for replicating writes between replicas
and reading data
• Distributed protocols w/ work on only some machines in

each replica for scalability
• Consistently reading data across shards required

transactions

Fault
Tolerant

Scalable Highly
Available
& Low Latency

Guarantees

Bayou yes no yes causal
Dynamo yes yes yes eventual
Paxos/RAFT yes no no linearizability
COPS yes yes yes Causal &

read-only txns

Strong Guarantees +
Scalability
• Strict Serializability: acts just like 1 machine

processing requests 1 at a time with transactions
across shards

• Atomic Commit w/ 2PC

• Concurrency control
• 1 Big Lock: No concurrency L
• 2PL: Growing phase then shrinking phase
• OCC: Assume you will succeed, only acquire locks

during 2PC

Fault
Tolerant

Scalable Highly
Available
& Low Latency

Guarantees

Bayou yes no yes causal
Dynamo yes yes yes eventual
Paxos/RAFT yes no no linearizability
COPS yes yes yes causal &

read-only txns
2PL no yes - strict serializability

Strong Guarantees +
Scalability + Fault Tolerance
• Google’s Spanner

• Sharding to scale storage
• Paxos for fault tolerance
• 2PL + 2PC for read-write transactions

• Strict serializability
• Scalable processing … mostly

• So many reads, make read-only txns efficient!
1. Strictly serializable read-only transactions that block, but do

not acquire any locks
2. Stale read-only transactions that do not even block

• Enabled by TrueTime
• TrueTime gives bounded wall-clock time interval
• Commit wait ensures a transaction completes after its wall-clock

commit time

Fault
Tolerant

Scalable Highly
Available
& Low Latency

Guarantees

Bayou yes no yes causal
Dynamo yes yes yes eventual
Paxos/RAFT yes no no linearizability
COPS yes yes yes causal &

read-only txns
2PL no yes - strict serializability
Spanner
(stale-read)

yes yes no
(yes)

strict serializability
(stale)

Strong Guarantees +
Scalability + Low Latency?
• SNOW is impossible for read-only transactions

• Must choose either the strongest guarantees
(Strict Serializability & Write transactions)
or the lowest latency
(Non-blocking & One Round)

• PRAM / CAP are for replication
SNOW / NOCS is for sharding

Now You Can!
• Build systems that are fault tolerant, scalable,

provide low latency, highly available
• + stronger guarantees, but not the strongest

• OR

• Build systems that are fault tolerant, scalable,
and provide the strongest guarantees

Making Systems Faster
• Reasoning about the performance of distributed

systems using a mental model

Let’s See It In Action

28

Client à Frontend Server

Inside the Datacenter
Web Tier Storage Tier

29

Executes frontend,
application code

Stores state,
provides …

Fault Tolerance?
Scalability?

Fault Tolerance?
Scalability?

Application Code Reads/Writes
to the Storage Tier

30

Storage
Application code

Facebook page load has 1000s of reads,
chains of sequential reads dozens long [HotOS ‘15]

Request

Page

31

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Scalable Storage is
Sharded and Geo-Replicated

A-F

G-L

M-R

S-Z

32

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

So Much Concurrency!

A-F

G-L

M-R

S-Z

33

A-F

G-L

M-R

S-Z

A-
F

G-
L

M-
R

S-
Z

So Many Failures!

A-F

G-L

M-R

S-Z

Not Just One Backend System

[Diagram from Kaushik Veeraraghavan’s OSDI ‘16 Talk]

Each Backend System is a
Distributed System
• But with different tradeoffs and designs

depending on use

• LIKE count?
• Eventually consistent storage system

• User Password?
• Strongly consistent storage system

Distributed Systems on
Distributed Systems on …

[Diagram from Malte Schwarzkopf PhD Thesis 2015]

More Systems
next Year?!?!!

• COS 316 – Principles of Computer System Design
• Fall
• Wyatt Lloyd

• COS 461 – Computer Networks
• Spring
• Kyle Jamieson

• COS 318 – Operating Systems
• Spring
• Mae Milano & Amit Levy

Thanks!

