Bitcoin and the Blockchain

COS 418: Distributed Systems Lecture 21

Mike Freedman

1

Problem: Equivocation!

Can Alice "pay" both Bob and Charlie with same bitcoin?

(Known as "double spending")

3

Bitcoin: 10,000 foot view

- New bitcoins are "created" every ~10 min, owned by "miner" (more on this later)
- Thereafter, just keep record of transfers
 - e.g., Alice pays Bob 1 BTC
- Basic protocol:
 - Alice signs transaction: txn = Sign_{Alice} (BTC, PK_{Bob})
 - Alice shows transaction to others...

2

How traditional e-cash handled problem

- When Alice pays Bob with a coin, Bob validates that coin hasn't been spend with trusted third party
- Introduced "blind signatures" and "zero-knowledge protocols" so bank can't link withdrawals and deposits

4

How traditional e-cash handled problem

 When Alice pays Bob with a coin, Bob validates that coin hasn't been spend with trusted third party

Bank maintains linearizable log of transactions

5

Bitcoin: 10,000 foot view

- Public
 - Transactions are signed: txn = Sign_{Alice} (BTC, PK_{Bob})
 - All transactions are sent to all network participants
- No equivocation: Log append-only and consistent
 - All transactions part of a hash chain
 - Consensus on set/order of operations in hash chain

Problem: Equivocation!

Goal: No double-spending in decentralized environment

Approach: Make transaction log

- 1. public
- 2. append-only
- 3. strongly consistent

6

Cryptography Hash Functions

- Take message m of arbitrary length and produces fixedsize (short) number H(m)
 - e.g., SHA-1 produces 160-bit output, SHA-256 has 256-bit output
- · One-way function
 - Efficient: Easy to compute H(m)
 - Hiding property: Hard to find an m, given H(m)
- · Collision resistance:
 - Strong resistance: Find any m!= m' such that H(m) == H(m')
 - Weak resistance: Given m, find m' such that H(m) == H(m')

8

7

Blockchain: Append-only hash chain prev: H() prev: H() prev: H(txn 5 txn 6 txn 7 • Hash chain creates "tamper-evident" log of txns · Security based on collision-resistance of hash function - Given m and h = hash(m), difficult to find m'

such that h = hash(m') and m != m'

Goal: Consensus

- Fault-tolerant protocols to achieve consensus of replicated log with *malicious* participants
 - Requires: $n \ge 3f + 1$ nodes, at most f faulty
- Problem
 - Communication complexity is n^2
 - Requires **strong view** of network participants

13

13

Consensus based on "work"

 Rather than "count" IP addresses, bitcoin "counts" the amount of CPU time / electricity that is expended

"The system is secure as long as honest nodes collectively control more CPU power than any cooperating group of attacker nodes."

- Satoshi Nakamoto

 Proof-of-work: Cryptographic "proof" that certain amount of CPU work was performed

15

Consensus susceptible to "Sybils"

- · Traditional consensus protocols based on membership
 - ... assume independent failures ...
 - ... which implies strong notion of identity
- "Sybil attack" (p2p literature ~2002)
 - Idea: one entity can create many "identities" in system
 - Typical defense: 1 IP address = 1 identity
 - Problem: IP addresses aren't difficult / expensive to get, esp. in world of botnets & cloud services

14

14

Key idea: Chain length requires work

- Generating a new block requires "proof of work"
- "Correct" nodes accept longest chain
- Creating fork requires rate of malicious work >> rate of correct
 - So, the older the block, the "safer" it is from being deleted

16

15

Use hashing to determine work!

- Recall hash functions are one-way / collision resistant
 - Given h, hard to find m such that h = hash(m)
- But what about finding partial collision?
 - -m whose hash has most significant bit = 0?
 - -m whose hash has most significant bit = 00?
 - Assuming output is randomly distributed, complexity grows exponentially with # bits to match

7

17

Bitcoin proof of work

Find **nonce** such that

hash (nonce || prev hash || block data) < target

i.e., hash has certain number of leading 0's

What about changes in total system hashing rate?

- Target is recalculated every 2 weeks
- · Goal: One new block every 10 minutes

18

18

Why consume all this energy?

- · Creating a new block creates bitcoin!
 - Initially 50 BTC, decreases over time, currently 3.125
 - · Last halving on April 19, 2024
 - Block height is 840,281 as of 4-21-2024
 - New bitcoin assigned to party named in new block
 - Called "mining" as you search for gold/coins

21

19

21

Form of randomized leader election

- Each time a nonce is found:
 - New leader elected for past epoch (~10 min)
 - Leader elected randomly, probability of selection proportional to leader's % of global hashing power
 - Leader decides which transactions comprise block

23

Incentivizing correct behavior?

 Race to find nonce and claim block reward, at which time race starts again for next block

hash (nonce || prev_hash || block data)

- As solution has prev_hash, corresponds to particular chain
- · Correct behavior is to accept longest chain
 - "Length" determined by aggregate work, not # blocks
 - So miners incentivized only to work on longest chain, as otherwise solution not accepted
 - Remember blocks on other forks still "create" bitcoin, but only matters if chain in collective conscious (majority)

22

One block = many transactions

- · Each miner picks a set of transactions for block
- · Builds "block header": prevhash, version, timestamp, txns, ...
- Until hash < target OR another node wins:
 - Pick nonce for header, compute hash = SHA256(SHA256(header))

24

Transactions are delayed

- At some time T, block header constructed
- Those transactions had been received [T 10 min, T]
- Block will be generated at time T + 10 min (on average)
- So transactions are from 10 20 min before block creation
- Can be much longer if "backlog" of transactions are long

25

25

Bitcoin & blockchain intrinsically linked

Commitments further delayed

- · When do you trust a transaction?
 - After we know it is "stable" on the hash chain
 - Recall that the longer the chain, the hard to "revert"
- Common practice: transaction "committed" when 6 blocks deep
 - i.e., Takes another ~1 hour for txn to become committed

26

Summary

- Coins xfer/split between "addresses" (PK) in txns
- Blockchain: Global ordered, append-only log of txns
 - Reached through decentralized consensus
 - Each epoch, "random" node selected to batch transactions into block and append block to log
 - Nodes incentivized to perform work and act correctly
 - When "solve" block, get block rewards + txn fees
 - Only "keep" reward if block persists on main chain

28

27

Appendix

.

Transaction format

29

Inputs:	Ø // Coinbase reward
Outputs:	25.0→PK_Alice
Inputs:	H(prevtxn, 0) // 25 BTC from Alice
Outputs:	25.0→PK_Bob signed(Alice)
Inputs:	H (prevtxn, 0) // 25 BTC From Alice
Outputs:	5.0→PK_Bob, 20.0 →PK_Alice2 signed(Alice)
Inputs:	H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs:	14.9→PK_Bob signed(Alice)

- Transaction typically has 1+ inputs, 1+ outputs
- Making change: 1st output payee, 2nd output self
- Output can appear in single later input (avoids scan back)

31

Transaction format: strawman

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob SIGNED(Alice)

Transfer 8 coins from Bob to Carol SIGNED(Bob)

Transfer 1 coins from Carol to Alice SIGNED(Carol)

How do you determine if Alice has balance? Scan backwards to time 0!

30

30

Transaction format

Inputs:	Ø // Coinbase reward
Outputs:	25.0→PK_Alice
Inputs:	H(prevtxn, 0) // 25 BTC from Alice
Outputs:	25.0→PK_Bob signed(Alice)
Inputs:	H (prevtxn, 0) // 25 BTC From Alice
Outputs:	5.0→PK_Bob, 20.0 →PK_Alice2 signed(Alice)
Inputs:	H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs:	14.9→PK_Bob signed(Alice)

- Unspent portion of inputs is "transaction fee" to miner
- In fact, "outputs" are stack-based scripts
- 1 Block = 1MB max

32

31

Q

Storage / verification efficiency Merkle tree Block Header (Block Hash) Binary tree of hashes Prev Hash Nonce Root hash "binds" leaves given collision resistance Root Hash · Using a root hash Hash23 - Block header now Hash01 constant size for hashing - Can prune tree to reduce Hash0 Hash2 Hash3 Hash1 storage needs over time Tx2 Tx3 Tx0 Tx1 33 33

Storage / verification efficiency

- · Merkle tree
 - Binary tree of hashes
 - Root hash "binds" leaves given collision resistance
- · Using a root hash
 - Block header now constant size for hashing
 - Can prune tree to reduce storage needs over time
 - Can prune when all txn outputs are spent
 - Now: 80GB pruned, 300GB unpruned

34

Rich ecosystem: Mining pools

health of mining ecosystem

- Mining == gambling:
 - Electricity costs \$, huge payout, low probability of winning
- Development of mining pools to amortize risk
 - Pool computational resources, participants "paid" to mine e.g., rewards "split" as a fraction of work, etc
 - Verification? Demonstrate "easier" proofs of work to admins
 - Prevent theft? Block header (coinbase txn) given by pool

36

35

APPLICATIONS & SOLUTIONS Exchanges @case BTET.com coinbase Grayscale Magni Leanbase String Yuanbao KOIBANX° A. coinbase BIT Pagos B BLOCKCHAIN GIFBITZ Unocoin XBTCC POLONIEX BTC o Ti Ledger Wallet keep xapo bread upollet Coinkite BITFINEX O CIRCLE Safello QuadragaCX WEALTHCOIN lighthouse -- Microtransactions --coinfloor V volabit O Coinffeine ProTip Strawpay ■ coinprism SHAPE SHET BTC press coinsecure Capital Markets --
Chain Symbiont

NASDAQ Private Market

Digital Asset Holdings Trading Platforms COINIGY --- Merchants ---MONEY SERVICES

CRYPTOPAY

ABRA

FORE

DBitwala Extra T T Street

Simplex Simplex SITX

Outhor

Uphold

SIMPLE COINFID

Localiticons bitpay
Bitnet Coinkite

PEY
Coinfy
Coinfy Compliance

third cosolutions
PROTUS

CHAINALYSIS

SSS BLOCK SEER I OrderBook clearmatics itBit tradewave TradeBlock to Alt Options Commer BITNOMIAL COINALYTICS bitcoinity. ConMarketCap CryptoCoin EXAVENEWEGINE TERA EXCHANGE / BITMEX O LocalBitcoins.com O LocalBitcoins...

BlinkTrade

MELOTIC ✓ Mirror × CRYEX Robocoin **bitxatm** 1Broker TABTRADER (Skyhook Glidera : bridge 21 Payments

Align

Common About Payments NOBLE MARKETS AlphaPoint GAZIBOJIO C evertedger LAMASSU GB BBVA & UBS LHV London Stock Dichare O BLADE (GAZEBO.10 -- Payroll & Insurance -thingchain GemPay cuber

✓ SETLio safe©cash > paybits bitwage BNY MELLON COR fidor citibank moni **MIDDLEWARE & SERVICES** General APIs

Ge **INFRASTRUCTURE & BASE PROTOCOLS** Obitcoin Statistics of Special - Spe