Consistency Models

COS 418/518: Distributed Systems
Lecture 14

Wyatt Lloyd, Mike Freedman

Consistency Models

Contract between a distributed system and the applications that run on it

 A consistency model is a set of guarantees made by the distributed system

Linearizability

- All replicas execute operations in some total order
- That total order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no real-time order
 - (But there must be some total order)

Real-Time Ordering Examples

$$P_{A}$$
 $\vdash w(x=1) \dashv$
 P_{B} $\vdash w(x=2) \dashv$
 P_{C} $\vdash w(x=3) \dashv$
 P_{D} $\vdash w(x=4) \dashv \vdash w(x=5) \dashv$
 P_{E} $\vdash w(x=6) \dashv$

$$P_{A} \vdash w(x=1) \dashv$$
 $P_{B} \vdash w(x=2) \dashv$
 $P_{C} \vdash w(x=3) \dashv$
 $P_{D} \vdash w(x=4) \dashv \vdash w(x=5) \dashv$
 $P_{E} \vdash w(x=6) \dashv$
 $P_{F} \vdash r(x)=1 \dashv \vdash r(x)=2 \dashv \vdash r(x)=3 \dashv \vdash r(x)=6 \dashv \vdash r(x)=5 \dashv$

$$P_{A} \vdash w(x=1) \dashv$$
 $P_{B} \vdash w(x=2) \dashv$
 $P_{C} \vdash w(x=3) \dashv$
 $P_{D} \vdash w(x=4) \dashv \vdash w(x=5) \dashv$
 $P_{E} \vdash w(x=6) \dashv$
 $P_{G} \vdash r(x)=1 \dashv \vdash r(x)=2 \dashv \vdash r(x)=5 \dashv \vdash r(x)=6 \dashv \vdash r(x)=5 \dashv$

$$P_{A} \vdash w(x=1) \dashv$$
 $P_{B} \vdash w(x=2) \dashv$
 $P_{C} \vdash w(x=3) \dashv$
 $P_{D} \vdash w(x=4) \dashv \vdash w(x=5) \dashv$
 $P_{E} \vdash w(x=6) \dashv$
 $P_{I} \vdash r(x)=1 \dashv \vdash r(x)=4 \dashv \vdash r(x)=5 \dashv \vdash r(x)=6 \dashv \vdash r(x)=3 \dashv$

Linearizability == "Appears to be a Single Machine"

- Single machine processes requests one by one in the order it receives them
 - Will receive requests ordered by real-time in that order
 - Will receive all requests in some order
- Atomic Multicast, Viewstamped Replication, Paxos, and RAFT provide Linearizability
- Single machine processing incoming requests one at a time also provide Linearizability ©

Linearizability is Ideal?

- Hides the complexity of the underlying distributed system from applications!
 - Easier to write applications
 - Easier to write correct applications
- But, performance trade-offs

Stronger vs Weaker Consistency

- Stronger consistency models
 - + Easier to write applications
 - More guarantees for the system to ensure Results in performance tradeoffs
- Weaker consistency models
 - Harder to write applications
 - + Fewer guarantees for the system to ensure

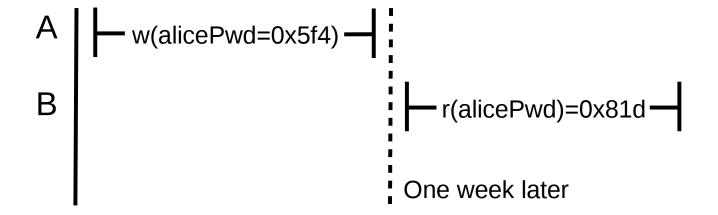
Strictly Stronger Consistency

- A consistency model A is strictly stronger than B if it allows a strict subset of the behaviors of B
 - Guarantees are strictly stronger

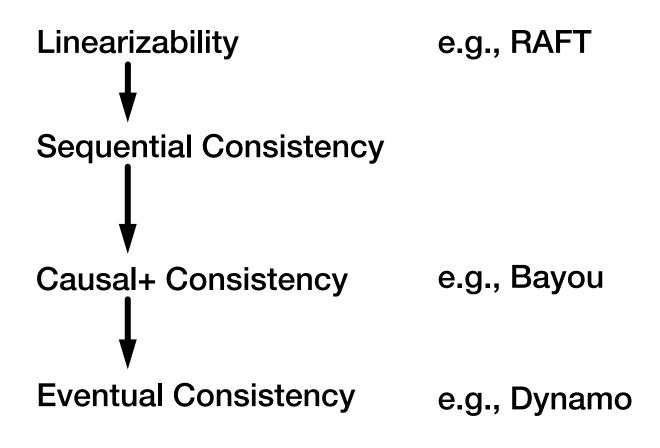
Sequential Consistency

All replicas execute operations in some total order

- That total order preserves the process ordering between operations
 - If process P issues operation A before operation B, then A is order before B by the process order
 - If operations A and B and done by different processes then there is no process order between them
 - (But there must be some total order)


Sequential Consistency ≈ "Appears to be a Single Machine"

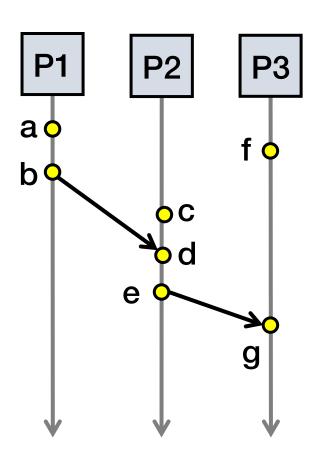
- Single machine processes requests one by one in the order it receives them
 - Will receive requests ordered by process order in that order
 - Will receive all requests in some order


Linearizability is strictly stronger than Sequential Consistency

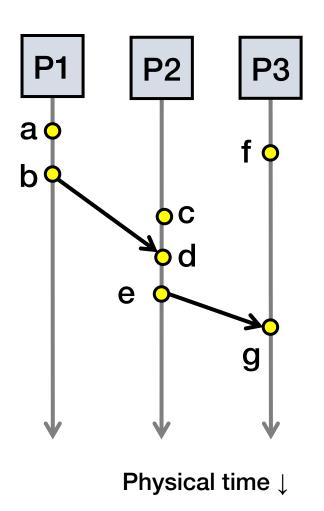
- Linearizability: ∃total order + real-time ordering
- Sequential: ∃total order + process ordering
 - Process ordering ⊆ Real-time ordering

Sequential But Not Linearizable

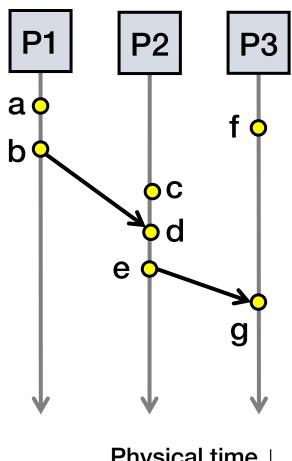
Consistency Hierarchy


- Partially orders all operations, does not totally order them
 - Does not look like a single machine

Guarantees


- For each process, ∃ an order of all writes + that process's reads
- Order respects the happens-before (→) ordering of operations
- + replicas converge to the same state
 - Skip details, makes it stronger than eventual consistency

- 1. Writes that are potentially causally related must be seen by all processes in same order.
- 2. Concurrent writes may be seen in a different order on different processes.
- Concurrent: Ops not causally related


- 1. Writes that are potentially causally related must be seen by all processes in same order.
- 2. Concurrent writes may be seen in a different order on different processes.
- Concurrent: Ops not causally related

Operations	Concurrent?
a, b	
b, f	
c, f	
e, f	
e, g	
a, c	
a, e	

Operations	Concurrent?		
a, b	N		
b, f	Υ		
c, f	Υ		
e, f	Υ		
e, g	N		
a, c	Υ		
a, e	N		

Physical time ↓

Causal+ But Not Sequential

$$P_A \vdash w(x=1) \dashv \vdash r(y)=0 \dashv$$

$$P_B \vdash w(y=1) \dashv \vdash r(x)=0 \dashv$$

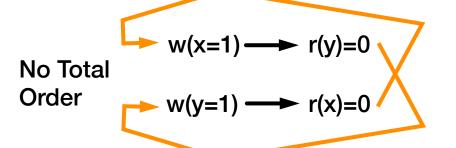
√ Casual+

Happens $w(x=1) \longrightarrow r(y)=0$

Before

Order $w(y=1) \longrightarrow r(x)=0$

 P_A Order: w(x=1), r(y=0), w(y=1)


 P_B Order: w(y=1), r(x=0), w(x=1)

X Sequential

Process $w(x=1) \longrightarrow r(y)=0$

Ordering

 $w(y=1) \longrightarrow r(x)=0$

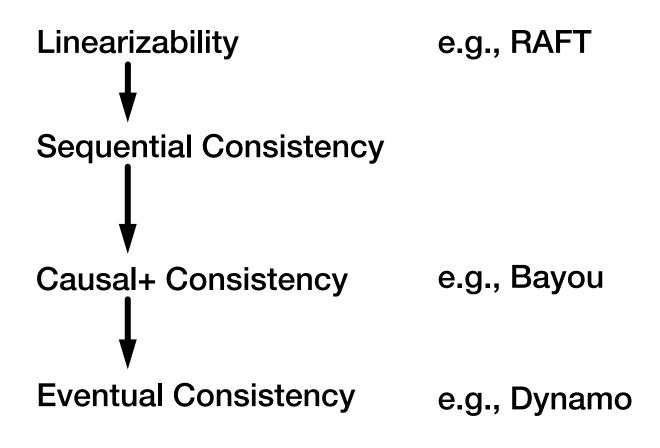
Eventual But Not Causal+

$$P_A \vdash w(x=1) \vdash w(y)=1 \vdash$$

 P_{B}

√ Eventual

As long as P_B eventually would see r(x)=1 this is fine



X Causal+

Happens $w(x=1) \longrightarrow w(y)=1$ Before $r(y)=1 \longrightarrow r(x)=0$

No Order for
$$P_B$$
 $v(x=1) \longrightarrow v(y)=1$ $r(y)=1 \longrightarrow r(x)=0$

Consistency Hierarchy

