COS320: Compiling Techniques

Zak Kincaid

March 21, 2024
Logistics

- Midterm scores released – please submit regrade requests by Friday 3/22
- HW3 due next Monday
Compiler phases (simplified)

Source text
 ↓ Lexing
Token stream
 ↓ Parsing
Abstract syntax tree
 ↓ Translation
Intermediate representation
 ↓ Code generation
Assembly
 ← Optimization
Semantic Analysis
Semantic analysis

- The *semantic analysis phase* is responsible for:
 - Connecting symbol *occurrences* to their definitions (i.e., implement scoping rules)
 - Checking that the AST is well-typed
 - Various other well-formedness checks not captured by the grammar (e.g., `break` must appear inside a `for`, `while`, or `switch`)

- Main data structure manipulated by semantic analysis: symbol table
 - Mapping from symbols to information about those symbols (type, location in source text, ...)
 - Symbol table is used to help translation into IR
 - Semantic analysis may also decorate AST (e.g., attach type information to expressions, or replace symbols with references to their symbol table entry)
The semantic analysis phase is responsible for:

- Connecting symbol occurrences to their definitions (i.e., implement scoping rules)
- Checking that the AST is well-typed
- Various other well-formedness checks not captured by the grammar (e.g., break must appear inside a for, while, or switch)

Semantic analysis phase can report warnings (potential problems) or errors (severe problems that must be resolved in order to compile)

- ex.c:4:5: warning: assignment makes integer from pointer without a cast
- ex.c:3:11: error: ‘i’ undeclared (first use in this function)
Semantic analysis

- The *semantic analysis phase* is responsible for:
 - Connecting symbol *occurrences* to their definitions (i.e., implement scoping rules)
 - Checking that the AST is well-typed
 - Various other well-formedness checks not captured by the grammar (e.g., `break` must appear inside a `for`, `while`, or `switch`)

- Semantic analysis phase can report *warnings* (potential problems) or *errors* (severe problems that must be resolved in order to compile)
 - ex.c:4:5: warning: assignment makes integer from pointer without a cast
 - ex.c:3:11: error: ‘i’ undeclared (first use in this function)

- Main data structure manipulated by semantic analysis: *symbol table*
 - Mapping from symbols to information about those symbols (type, location in source text, ...)
 - Symbol table is used to help translation into IR
 - Semantic analysis may also *decorate* AST (e.g., attach type information to expressions, or replace symbols with references to their symbol table entry)
Types

- Type checking catches errors at compile time, eliminating a class of mistakes that would otherwise lead to run-time errors.
- Type information is sometimes necessary for code generation:
 - Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
 - Pointer/integer compiled differently depending on pointer type
 - Assignment $x = y$ compiled differently if y is an int or a struct
What is a type?

- **Intrinsic view** (Church-style): a type is syntactically part of a term.
 - A term that cannot be typed is not a term at all
 - Types do not have inherent meaning – they are just used to define the syntax of a program

- **Extrinsic view** (Curry-style): a type is a *property* of a term.
 - For any term and every type, either the term has that type or not
 - A term may have multiple types
 - A term may have no types

Alonzo Church

Haskell Curry
What is a type system?

A type system consists of a system of judgements and inference rules

- **(Extrinsic view)** A **judgement** is a *claim*, which may or may not be valid
 - \(\vdash 3 : \text{int} \) – “3 has type integer”
 - \(\vdash (1 + 2) : \text{bool} \) – “(1+2) has type boolean”
 - A type system might involve many different kinds of judgement (well-typed expressions, well-formed types, well-formed statements, ...)

- **Inference rules** are used to derive *valid* judgements from other valid judgements.

\[
\begin{align*}
\text{ADD} \\
\vdash e_1 : \text{int} & \quad \vdash e_2 : \text{int} \\
\hline
\vdash e_1 + e_2 : \text{int}
\end{align*}
\]

Read: “If \(e_1 \) and \(e_2 \) have type \text{int}, so does \(e_1 + e_2 \)”
Inference rules, generally

An *inference rule* consists of a list of *premises* J_1, \ldots, J_n and one *conclusion* J (and optionally a side-condition), typically written as:

$$
\begin{array}{c}
J_1 \quad J_2 \quad \cdots \quad J_n \\
\hline
J \\
\end{array}
$$

Side-condition: additional premise, but not a judgement

Read top-down: If J_1 and J_2 and \ldots and J_n are valid (and the side condition holds) then J is valid.

Read bottom-up: To prove J is valid, sufficient to prove J_1, J_2, \ldots J_n are valid (+ side condition)
A simple expression language

- Syntax of expressions

\[
<\text{Exp}> ::= \text{<Var>} \mid \text{<Int>}
\]
\[
\ | \ <\text{Exp}>+<\text{Exp}> \mid <\text{Exp}>*<\text{Exp}>
\]
\[
\mid <\text{Exp}>\wedge<\text{Exp}> \mid <\text{Exp}>\vee<\text{Exp}>
\]
\[
\mid <\text{Exp}>\leq<\text{Exp}> \mid <\text{Exp}>=<\text{Exp}>
\]
\[
\mid \text{if } <\text{Exp}> \text{ then } <\text{Exp}> \text{ else } <\text{Exp}>
\]

- \(3 + (2 \wedge 0)\) is syntactically well-formed, but not well-typed
- Is \(x + 1\) well-typed?
Type judgements

- A **type environment** is a symbol table mapping symbols to types.
 - E.g., $[x \mapsto \text{int}, y \mapsto \text{bool}, z \mapsto \text{int}]: x$ and z are ints, y is a bool
 - Notation: type environment denoted by Γ
 - Notation: $\Gamma\{x \mapsto t\}$ is a functional update

$$
\Gamma\{x \mapsto t\}(y) = \begin{cases}
t & \text{if } x = y \\
\Gamma(y) & \text{otherwise}
\end{cases}
$$

- E.g., $[x \mapsto \text{int}, y \mapsto \text{int}]\{x \mapsto \text{bool}\} = [x \mapsto \text{bool}, y \mapsto \text{int}]$
Type judgements

- A **type environment** is a symbol table mapping symbols to types.
 - E.g., \([x \mapsto \text{int}, y \mapsto \text{bool}, z \mapsto \text{int}]\): \(x\) and \(z\) are \text{ints}, \(y\) is a \text{bool}
 - Notation: type environment denoted by \(\Gamma\)
 - Notation: \(\Gamma \{ x \mapsto t \}\) is a functional update

\[
\Gamma \{ x \mapsto t \}(y) = \begin{cases}
 t & \text{if } x = y \\
 \Gamma(y) & \text{otherwise}
\end{cases}
\]

- E.g., \([x \mapsto \text{int}, y \mapsto \text{int}] \{ x \mapsto \text{bool} \} = [x \mapsto \text{bool}, y \mapsto \text{int}]\)

- **A type judgement** takes the form \(\Gamma \vdash e : t\)
 - Read “Under the type environment \(\Gamma\), the expression \(e\) has type \(t\)”
Inference rules

INT

\[
\begin{align*}
\Gamma \vdash n : \text{int} & \quad n \in \{\ldots, -1, 0, 1, \ldots\} \\
\end{align*}
\]

VAR

\[
\begin{align*}
\Gamma \vdash x : t & \\
\Gamma(x) = t &
\end{align*}
\]

ADD

\[
\begin{align*}
\Gamma \vdash e_1 : \text{int} & \quad \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash e_1 + e_2 : \text{int} &
\end{align*}
\]

AND

\[
\begin{align*}
\Gamma \vdash e_1 : \text{bool} & \quad \Gamma \vdash e_2 : \text{bool} \\
\Gamma \vdash e_1 \land e_2 : \text{bool} &
\end{align*}
\]

LEQ

\[
\begin{align*}
\Gamma \vdash e_1 : \text{int} & \quad \Gamma \vdash e_2 : \text{int} \\
\Gamma \vdash e_1 \leq e_2 : \text{bool} &
\end{align*}
\]

IF

\[
\begin{align*}
\Gamma \vdash e_1 : \text{bool} & \quad \Gamma \vdash e_2 : t & \quad \Gamma \vdash e_3 : t \\
\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t &
\end{align*}
\]
A **derivation** or *proof tree* is a tree where each node is labelled by a judgement, and edges connect premises to a conclusion according to some inference rule.

- Leaves of the tree are *axioms* (inference rules w/o premises)

Derivation of $x : \text{int} \vdash 2 + x \leq 10 : \text{bool}$:

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INT</strong></td>
<td>$x : \text{int} \vdash 2 : \text{int}$</td>
</tr>
<tr>
<td><strong>ADD</strong></td>
<td></td>
</tr>
<tr>
<td><strong>LEQ</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x : \text{int} \vdash 2 + x \leq 10 : \text{bool}$</td>
</tr>
</tbody>
</table>
```
Derivation for \(x : \text{int} \vdash \text{if } x \leq 0 \text{ then } x \text{ else } -1 \times x : \text{int} \):

\[
\begin{array}{cccc}
\text{VAR} & x : \text{int} \vdash x : \text{int} & \text{INT} & x : \text{int} \vdash -1 : \text{int} \\
\text{LEQ} & x : \text{int} \vdash x \leq 0 : \text{bool} & \text{VAR} & x : \text{int} \vdash x : \text{int} \\
\text{IF} & x : \text{int} \vdash \text{if } x \leq 0 \text{ then } x \text{ else } -1 \times x : \text{int} & \text{INT} & x : \text{int} \vdash -1 : \text{int} \\
\text{MUL} & x : \text{int} \vdash -1 \times x : \text{int} & \text{VAR} & x : \text{int} \vdash x : \text{int}
\end{array}
\]
Type checking

- Goal of a type checker: given a context Γ, expression e, and type t, determine whether a derivation of the judgement $\Gamma \vdash e : t$ exists.
- Method: recurse on the structure of the AST, applying inference rules “bottom-up”
Binders & functions: scope logic

\[
\begin{align*}
\text{LET} & \quad \Gamma \vdash e_1 : t_1 \quad \Gamma \{x \mapsto t_1\} \vdash e_2 : t \\
& \quad \Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : t \\
\text{FUN} & \quad \Gamma \{x \mapsto t_1\} \vdash e : t_2 \\
& \quad \Gamma \vdash \text{fun } (x : t_1) \rightarrow e : t_1 \rightarrow t_2 \\
\text{APP} & \quad \Gamma \vdash e_1 : t_1 \rightarrow t_2 \quad \Gamma \vdash e_2 : t_1 \\
& \quad \Gamma \vdash e_1 \ e_2 : t_2
\end{align*}
\]
Type inference

- Goal of type inference: given a context \(\Gamma \) and expression \(e \), determine a type \(t \) for which there is a derivation of the judgement \(\Gamma \vdash e : t \).
- Method: (again) recurse on the structure of the AST, applying inference rules “bottom-up”
- This only works because we have a very simple type system
 - OCaml type inference (Hindley–Milner): recurse on the structure of the AST to produce a constraint system, then solve the constraints
Type soundness

Well typed programs cannot “go wrong”

Robin Milner

- More formally: if $\vdash e : t$ is derivable, then evaluating e either fails to terminate or yields a value of type t
 - Note: for our language (extension of simply-typed lambda calculus with integers and booleans), we have something stronger: evaluating e always yields a value of type t
Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - H is set of type names
 - t is a type
 - $H \vdash t$ - “Assuming H names well-formed types, t is a well-formed type”
Well-formed types

- In languages with type definitions, need additional rules to define well-formed types.
- Judgements take the form $H \vdash t$
 - H is set of type names
 - t is a type
 - $H \vdash t$ – “Assuming H names well-formed types, t is a well-formed type”

<table>
<thead>
<tr>
<th>INT</th>
<th>BOOL</th>
<th>ARROW</th>
<th>NAMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \vdash \text{int}$</td>
<td>$H \vdash \text{bool}$</td>
<td>$H \vdash t_1 ; \quad H \vdash t_2$</td>
<td>$H \vdash s \quad s \in H$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H \vdash t_1 \rightarrow t_2$</td>
<td></td>
</tr>
</tbody>
</table>

Note: also need to modify the typing rules & judgements. E.g.,

Fun $H \vdash t_1 \; \Gamma \vdash \text{fun}(x : t_1) \rightarrow e : t_1 \rightarrow t_2$
Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - H is set of type names
 - t is a type
 - $H \vdash t$ – “Assuming H names well-formed types, t is a well-formed type”

\[
\begin{array}{cccc}
\text{INT} & \text{BOOL} & \text{ARROW} & \text{NAMED} \\
\hline
H \vdash \text{int} & H \vdash \text{bool} & H \vdash t_1 \quad H \vdash t_2 \quad H \vdash t_1 \to t_2 & H \vdash s \quad s \in H
\end{array}
\]

- Note: also need to modify the typing rules & judgements. E.g.,

\[
\begin{array}{c}
\text{FUN} \\
H \vdash t_1 & H, \Gamma \{x \mapsto t_1\} \vdash e : t_2 \quad H, \Gamma \vdash \text{fun} (x : t_1) \to e : t_1 \to t_2
\end{array}
\]
Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g., judgements may take the form $\Gamma; rt \vdash s$
 - Γ is a type environment (variables \rightarrow types)
 - rt is a type
 - $\Gamma; rt \vdash s$ - “assuming type environment Γ, s is a well-formed statement within a function that returns a value of type rt"
In languages with statements, need additional rules to defined well-formed statements.

E.g., judgements may take the form $\Gamma; rt \vdash s$

- Γ is a type environment (variables \rightarrow types)
- rt is a type
- $\Gamma; rt \vdash s$ – “assuming type environment Γ, s is a well-formed statement within a function that returns a value of type rt”

ASSIGN
\[
\frac{\Gamma \vdash e : \Gamma(x)}{\Gamma; rt \vdash x := e}
\]

RETURN
\[
\frac{\Gamma \vdash e : rt}{\Gamma; rt \vdash \text{return } e}
\]

DECL
\[
\frac{\Gamma \vdash e : t \quad \Gamma\{x \mapsto t\}; rt \vdash s_2}{\Gamma; rt \vdash \text{var } x = e; s_2}
\]
Additional aspects

- In OCaml, can have a variable and a type with the same name
 - Multiple namespaces ⇒ multiple environments / symbol tables
- Parametric polymorphism
 - E.g., `fun x -> x` in ocaml has type `'a -> 'a`
 - Finite representation of infinitely many typings
- Subtyping (e.g., object-oriented languages) – next time
 - Related: casting, coercion