COS320: Compiling Techniques

Zak Kincaid

April 11, 2024
Static Single Assignment form
Each %uid appears on the left-hand-side of at most one assignment in a CFG

```plaintext
if (x < 0) {
    y := y - x;
} else {
    y := y + x;
}
return y
```

→

```plaintext
if (x_0 < 0) {
    y_1 := y_0 - x_0;
} else {
    y_2 := y_0 + x_0;
}
y_3 := \phi(y_1, y_2)
return y_3
```

- Recall: $y_3 := \phi(y_1, y_2)$ picks either y_1 or y_2 (whichever one corresponds to the branch that is actually taken) and stores it in y_3
- Well-formedness condition: uids must be defined before they are used.
 - Formal definition to follow!
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables $x_1, x_2, x_3, ...$
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables $x_1, x_2, x_3, ...$
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, ...
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are chordal (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - (But optimal translation out of SSA form is intractable)
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \%x \text{ has no uses do}
\]
\[
\quad \text{Remove definition of } \%x \text{ from CFG;}
\]
\[
\quad \text{SSA conversion } \Rightarrow \text{ more assignments are eliminated}
\]

\[
\begin{align*}
x & := 0 \\
x & := 1 \\
\text{return } 2 \times x
\end{align*}
\]

\(^1\)does not eliminate dead stores
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \%x \text{ has no uses do}
\]
- Remove definition of \(\%x\) from CFG;

- SSA conversion $$\Rightarrow$$ more assignments are eliminated

\[
\begin{align*}
\text{x := 0} \\
\text{x := 1} \\
\text{return 2 * x}
\end{align*}
\]

\[
\begin{align*}
\text{x}_0 := 0 \\
\text{x}_1 := 1 \\
\text{return 2 * x}_1
\end{align*}
\]

\(^1\)does not eliminate dead stores
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

\[
\text{while some } \% x \text{ has no uses do}
\]
\[
\text{ Remove definition of } \% x \text{ from CFG;}
\]

- SSA conversion \Rightarrow more assignments are eliminated

\[
\begin{align*}
&x := 0 \\
&x := 1 \\
&\text{return } 2 \times x
\end{align*}
\]

\[
\begin{align*}
&x_0 := 0 \\
&x_1 := 1 \\
&\text{return } 2 \times x_1
\end{align*}
\]

\(^1\)does not eliminate dead stores
Dead assignment elimination

Simple algorithm for eliminating assignment\(^1\) instructions that are never used:

```plaintext
while some \( \%x \) has no uses do
    Remove definition of \( \%x \) from CFG;

• SSA conversion \( \Rightarrow \) more assignments are eliminated
```

\[
\begin{align*}
 x &:= 0 \\
 x &:= 1 \\
 \text{return } 2 \times x
\end{align*}
\]

\[
\begin{align*}
 x_1 &:= 1 \\
 \text{return } 2 \times x_1
\end{align*}
\]

\(^1\)does not eliminate dead stores
Recall: constant propagation

- The goal of constant propagation: determine at each instruction I a *constant environment*
 - A *constant environment* is a symbol table mapping each variable x to one of:
 - an integer n (indicating that x's value is n whenever the program is at I)
 - \top (indicating that x might take more than one value at I)
 - \bot (indicating that x may take no values at run-time – I is unreachable)
- Say that the assignment IN, OUT is *conservative* if
 1. $\text{IN}[s]$ assigns each variable \top
 2. For each node $bb \in N$,
 \[\text{OUT}[bb] \equiv \text{post}_{CP}(bb, \text{IN}[bb]) \]
 3. For each edge $src \rightarrow dst \in E$,
 \[\text{IN}[dst] \equiv \text{OUT}[src] \]
(Dense) constant propagation performance

- Memory requirements: $\Theta(|N| \cdot |Var|)$
 - Constant environment has size $\Theta(|Var|)$, need to track $\Theta(1)$ per node
- Time requirements: $\Theta(|E| \cdot |Var|) = \Theta(|N| \cdot |Var|)$
 - Processing a single node takes $\Theta(1)$ time
 - Each edge is processed $\Theta(|Var|)$ times
 - **Height** of the abstract domain (length of longest strictly ascending sequence): $|Var| + 1$
- Can we do better?
Sparse constant propagation

- Idea: SSA connects variable *definitions* directly to their *uses*
 - Don’t need to store the value of *every* variable at *every* program point
 - Don’t need to propagate changes through irrelevant blocks
Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
 - Don't need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define $\text{rhs}(\%x)$ to be the right hand side of the unique assignment to $\%x$
 - Define $\text{succ}(\%x) = \{ \%y : \text{rhs}(\%y) \text{ reads } \%x \}$
Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don’t need to store the value of every variable at every program point
 - Don’t need to propagate changes through irrelevant blocks
- Can think of SSA as a graph, where edges correspond to data flow rather than control flow
 - Define $rhs(\%x)$ to be the right hand side of the unique assignment to $\%x$
 - Define $succ(\%x) = \{\%y : rhs(\%y) \text{ reads } \%x\}$
- Local specification for constant propagation:
 - scp is the smallest function $Uid \rightarrow \mathbb{Z} \cup \{\top, \bot\}$ such that
 - If G contains no assignments to $\%x$, then $scp(\%x) = \top$
 - For each instruction $\%x = e$, $scp(\%x) = eval(e, scp)$
 - For each instruction $\%x = \phi(\%y, \%z)$, $scp(\%x) = scp(\%y) \cup scp(\%z)$
Worklist algorithm

\[
scp(\%x) = \begin{cases}
\bot & \text{if } \%x \text{ has an assignment} \\
\top & \text{otherwise}
\end{cases}
\]

\[
work \leftarrow \{\%x \in Uid : \%x \text{ is defined}\};
\]

\begin{algorithm}
\[\]
while work \neq \emptyset do
\[\]
\hspace{1em} \text{Pick some } \%x \text{ from work;}
\hspace{1em} \text{work} \leftarrow \text{work} \setminus \{\%x\};
\hspace{1em} \text{if } rhs(\%x) = \phi(\%y, \%z) \text{ then}
\hspace{2.5em} v \leftarrow scp(\%y) \sqcup scp(\%z)
\hspace{1em} \text{else}
\hspace{2.5em} v \leftarrow \text{eval}(rhs(\%x), scp)
\hspace{1em} \text{if } v \neq scp(\%x) \text{ then}
\hspace{3.5em} scp(\%x) \leftarrow v,
\hspace{3.5em} \text{work} \leftarrow \text{work} \cup \text{succ}(\%x)
\]\end{algorithm}
Computational complexity of constant propagation

<table>
<thead>
<tr>
<th></th>
<th>Dense</th>
<th>Sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>$\Theta(</td>
<td>N</td>
</tr>
<tr>
<td>Time</td>
<td>$\Theta(</td>
<td>N</td>
</tr>
</tbody>
</table>

- *However*, observe that we only find constants for uids, not stack slots.
- *Again*, advantageous to use uids to represent variable whenever possible
Computing SSA
(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each use of a variable y with y_i, where the ith definition of y is the unique reaching definition
(High-level) SSA conversion

- Replace each definition $x = e$ with a $x_i = e$ for some unique subscript i
- Replace each use of a variable y with y_i, where the ith definition of y is the unique reaching definition
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) statement

```plaintext
y := 0;
while (x >= 0) {
    x := x - 1;
    y := y + x;
}
return y
```

```plaintext
y_0 := 0;
while (true) {
    x_2 = \phi(x_0, x_1)
    y_2 = \phi(y_0, y_1)
    if (x_2 < 0) break;
    x_1 := x_2 - 1;
    y_1 := y_2 + x_1;
}
return y_2
```
Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each join point
 - A join point is a node in the CFG with more than one predecessor

ϕ statements can be placed exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that:

1. The start node of both P_1 and P_2 defines x
2. The only node shared by P_1 and P_2 is n

The path convergence criterion can be implemented using the concept of iterated dominance frontiers. The entry node of the CFG is considered to be an implicit definition of every variable.

2The entry node of the CFG is considered to be an implicit definition of every variable.
Placing ϕ statements

- Easy, inefficient solution: place a ϕ statement for each variable location at each *join point*
 - A *join point* is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following path convergence criterion holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 1. The start node of both P_1 and P_2 defines x
 2. The only node shared by P_1 and P_2 is n
- The path convergence criterion can be implemented using the concept of *iterated dominance frontiers*.

2 The entry node of the CFG is considered to be an implicit definition of every variable.
Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.
Dominance

- Let $G = (N, E, s)$ be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - Every node dominates itself
 - d strictly dominates n if d is not n
 - d immediately dominates n if d strictly dominates n and but does not strictly dominate any strict dominator of n.
- Observe: dominance is a partial order on N
 - Every node dominates itself (reflexive)
 - If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 - If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)
If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.

- (Essentially the Haase diagram of the dominated-by order)
Dominance and SSA

- SSA well-formedness criteria
 - If x is used in a non-ϕ statement in block n, then the definition of x must dominate n.
 - If x is the ith argument of a ϕ function in a block n, then the definition of x must dominate the ith predecessor of n.
Dominator analysis

- Let $G = (N, E, s)$ be a control flow graph.
- Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it.
Dominator analysis

- Let \(G = (N, E, s) \) be a control flow graph.
- Define \(dom \) to be a function mapping each node \(n \in N \) to the set \(dom(n) \subseteq N \) of nodes that dominate it.
- **Local specification:** \(dom \) is the largest (equiv. least in superset order) function such that
 - \(dom(s) = \{s\} \)
 - For each \(p \rightarrow n \in E \), \(dom(n) \subseteq \{n\} \cup dom(p) \)
Dominator analysis

• Let $G = (N, E, s)$ be a control flow graph.
• Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it
• **Local specification:** dom is the largest (equiv. least in superset order) function such that
 • $\text{dom}(s) = \{s\}$
 • For each $p \rightarrow n \in E$, $\text{dom}(n) \subseteq \{n\} \cup \text{dom}(p)$
• Can be solved using dataflow analysis techniques
 • In practice: nearly linear time algorithm due to Lengauer & Tarjan
• Recall: If $\%x$ is the ith argument of a ϕ function in a block n, then the definition of $\%x$ must dominate the ith predecessor of n.

• The dominance frontier of a node n is the set of all nodes m such that n dominates a predecessor of m, but does not strictly dominate m itself.
 \[
 DF(n) = \{ m : (\exists p \in Pred(m). n \in dom(p)) \land (m = n \lor n \notin dom(m)) \}\]

• Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ function for $\%x$.
\[DF(1) = \emptyset \]
• $DF(1) = \emptyset$
• $DF(2) = \{2\}$
• $DF(1) = \emptyset$
• $DF(2) = \{2\}$
• $DF(3) = \{3, 6\}$
\[\begin{align*}
\text{DF}(1) &= \emptyset \\
\text{DF}(2) &= \{2\} \\
\text{DF}(3) &= \{3, 6\} \\
\text{DF}(4) &= \{6\} \\
\text{DF}(5) &= \{3, 6\} \\
\text{DF}(6) &= \{2\} \\
\end{align*} \]
Dominance frontier is not enough!

- Whenever a node \(n \) contains a definition of some uid \(\%_0x \), then any node \(m \) in the dominance frontier of \(n \) needs a \(\phi \) statement for \(\%_0x \).
- \textbf{But}, that is not the only place where \(\phi \) statements are needed
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- *But*, that is not the only place where ϕ statements are needed.

```
4: x_4 = ...
5: x_5 = ...
8: x_8 = \phi(x_4, x_5)
6: x_6 = ...
7: x_7 = ...
9: x_9 = \phi(x_6, x_7)
```
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $%_0 x$, then any node m in the dominance frontier of n needs a ϕ statement for $%_0 x$.
- *But*, that is not the only place where ϕ statements are needed
Placing ϕ statements

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$

- Define the iterated dominance frontier $IDF(M) = \bigcup_{i} IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$

Finally, we can characterize ϕ statement placement: Insert a ϕ statement for x at every node in $IDF(Def(x))$.
Placing ϕ statements

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$

- Define the iterated dominance frontier $IDF(M) = \bigcup_{i} IDF_{i}(M)$, where
 - $IDF_{0}(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_{i}(M) \cup IDF(IDF_{i}(M))$

- For any node x, let $Def(x)$ be the set of nodes that define x

- Finally, we can characterize ϕ statement placement:

 Insert a ϕ statement for x at every node in $IDF(Def(x))$
Transforming out of SSA

- The \(\phi \) statement is not executable, so it must be removed in order to generate code.
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
- For each ϕ statement $\%x = \phi(\%x_1, \ldots, \%x_k)$ in block n, n must have exactly k predecessors p_1, \ldots, p_k.
- Insert a new block along each edge $p_i \rightarrow n$ that executes $\%x = \%x_i$ (program no longer satisfies SSA property!)
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
- For each ϕ statement $%x = \phi(%x_1, \ldots, %x_k)$ in block n, n must have exactly k predecessors p_1, \ldots, p_k.
- Insert a new block along each edge $p_i \rightarrow n$ that executes $%x = %x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions.
SSA overview

- SSA can make analysis and optimization
 - simpler
 - more efficient
 - more accurate

- at the cost of
 - having to compute SSA / maintain SSA invariants
 - complicating code generation

- Most imperative compilers use SSA: LLVM, gcc, HotSpot, mono, v8, spidermonkey, go, ...

- Dominance is the key idea needed to efficiently transform into SSA
 - Will also make an appearance next week when we talk about loop optimizations