Generic (forward) dataflow analysis algorithm

- **Given:**
 - Abstract domain \((\mathcal{L}, \subseteq, \cup, \bot, \top)\)
 - Transfer function \(\text{post}_\mathcal{L} : \text{Basic Block} \times \mathcal{L} \to \mathcal{L}\)
 - Control flow graph \(G = (N, E, s)\)

- **Compute:** least annotation \(\text{IN}, \text{OUT}\) such that
 1. \(\text{IN}[s] = \top\)
 2. For all \(n \in N\), \(\text{post}_\mathcal{L}(n, \text{IN}[n]) \subseteq \text{OUT}[n]\)
 3. For all \(p \to n \in E\), \(\text{OUT}[p] \subseteq \text{IN}[n]\)

\[
\begin{align*}
\text{IN}[s] &= \top, \text{OUT}[s] = \bot; \\
\text{IN}[n] &= \text{OUT}[n] = \bot \text{ for all other nodes } n; \\
\text{work} &\leftarrow N; \\
\text{while } \text{work} \neq \emptyset \text{ do} \\
\quad &\text{Pick some } n \text{ from work;} \\
\quad &\text{work} \leftarrow \text{work} \setminus \{n\}; \\
\quad &\text{old} \leftarrow \text{OUT}[n]; \\
\quad &\text{IN}[n] \leftarrow \text{IN}[n] \cup \bigcup_{p \in \text{pred}(n)} \text{OUT}[p]; \\
\quad &\text{OUT}[n] \leftarrow \text{post}_\mathcal{L}(n, \text{IN}[n]); \\
\quad &\text{if } \text{old} \neq \text{OUT}[n] \text{ then} \\
\quad &\quad \text{work} \leftarrow \text{work} \cup \text{succ}(n)
\end{align*}
\]

return \(\text{IN}, \text{OUT}\)
(Partial) Correctness

\(\text{IN}[s] = \top, \text{OUT}[s] = \bot; \)
\(\text{IN}[n] = \text{OUT}[n] = \bot \) for all other nodes \(n; \)
work \(\leftarrow N; \)
while work \(\neq \emptyset \) do
 \begin{align*}
 &\text{Pick some } n \text{ from work;} \\
 &\quad \text{work} \leftarrow \text{work} \setminus \{n\}; \\
 &\quad \text{old} \leftarrow \text{OUT}[n]; \\
 &\quad \text{IN}[n] \leftarrow \text{IN}[n] \cup \biguplus_{p \in \text{pred}(n)} \text{OUT}[p]; \\
 &\quad \text{OUT}[n] \leftarrow \text{post}_L(n, \text{IN}[n]); \\
 &\quad \text{if old} \neq \text{OUT}[n] \text{ then} \\
 &\quad \quad \text{work} \leftarrow \text{work} \cup \text{succ}(n)
\end{align*}
return \text{IN}, \text{OUT}

When algorithm terminates, all constraints are satisfied. Invariants:

- \(\text{IN}[s] = \top \)
- For any \(n \in N, \) if \(\text{post}_L(n, \text{IN}[n]) \not\subseteq \text{OUT}[n], \) we have \(n \in \text{work} \)
- For any \(p \to n \in E \) with \(\text{OUT}[p] \not\subseteq \text{IN}(n), \) we have \(n \in \text{work} \)
Optimality

Algorithm computes *least* solution.

- Invariant: $\text{IN} \preceq^* \overline{\text{IN}}$ and $\text{OUT} \preceq^* \overline{\text{OUT}}$, where
 - $\overline{\text{IN}}/\overline{\text{OUT}}$ denotes any solution to the constraint system
 - \preceq^* is pointwise order on function space $N \to \mathcal{L}$
Optimality

Algorithm computes least solution.

- Invariant: $\text{IN} \sqsubseteq^* \overline{\text{IN}}$ and $\text{OUT} \sqsubseteq^* \overline{\text{OUT}}$, where
 - $\overline{\text{IN}}/\overline{\text{OUT}}$ denotes any solution to the constraint system
 - \sqsubseteq^* is pointwise order on function space $N \to \mathcal{L}$
- Argument: let IN_i/OUT_i be IN/OUT at iteration i; n_i be workset item
 - Base case $\text{IN}_0 \sqsubseteq^* \overline{\text{IN}}$ and $\text{OUT}_0 \sqsubseteq^* \overline{\text{OUT}}$ is easy
 - Inductive step:
 - $\text{IN}_{i+1}[n_i] = \text{IN}_i[n_i] \sqcup \bigcup_{p \rightarrow n_i \in E} \text{OUT}_i[p] \sqsubseteq \overline{\text{IN}}[n_i] \sqcup \bigcup_{p \rightarrow n_i \in E} \overline{\text{OUT}}[p] \sqsubseteq \overline{\text{IN}}[n_i]$
 - $\text{OUT}_{i+1}[n_i] = \text{post}_\mathcal{L}(n_i, \text{IN}_{i+1}[n_i]) \sqsubseteq \text{post}_\mathcal{L}(n_i, \overline{\text{IN}}[n_i]) \sqsubseteq \overline{\text{OUT}}[n_i]$
 - For any $n \neq n_i$, $\text{IN}_{i+1}[n] = \text{IN}_i[n] \sqsubseteq \overline{\text{IN}}[n_i]$
Termination

- Why does this algorithm terminate?
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- Ascending chain condition is sufficient.
 - A partial order \(\subseteq \) satisfies the ascending chain condition if any infinite ascending sequence

\[
x_1 \subseteq x_2 \subseteq x_3 \subseteq \ldots
\]

eventually stabilizes: for some \(i \), we have \(x_j = x_i \) for all \(j \geq i \).
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- Ascending chain condition is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots$$

eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \geq i$.
- Fact: X is finite $\Rightarrow (2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. (available expressions)
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- **Ascending chain condition** is sufficient.
 - A partial order \(\sqsubseteq \) satisfies the ascending chain condition if any infinite ascending sequence
 \[
 x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots
 \]
eventually stabilizes: for some \(i \), we have \(x_j = x_i \) for all \(j \geq i \).
- Fact: \(X \) is finite \(\Rightarrow (2^X, \subseteq) \) and \((2^X, \supseteq) \) satisfy a.c.c. (**available expressions**)
- Fact: \(X \) is finite and \((\mathcal{L}, \sqsubseteq) \) satisfies a.c.c. \(\Rightarrow (X \rightarrow \mathcal{L}, \sqsubseteq^*) \) satisfies a.c.c. (**constant propagation**)
Termination

- Why does this algorithm terminate?
 - In general, it doesn’t
- **Ascending chain condition** is sufficient.
 - A partial order \sqsubseteq satisfies the ascending chain condition if any infinite ascending sequence

$$x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots$$

eventually stabilizes: for some i, we have $x_j = x_i$ for all $j \geq i$.
- Fact: X is finite \Rightarrow $(2^X, \subseteq)$ and $(2^X, \supseteq)$ satisfy a.c.c. *(available expressions)*
- Fact: X is finite and $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c. \Rightarrow $(X \rightarrow \mathcal{L}, \sqsubseteq^*)$ satisfies a.c.c. *(constant propagation)*

- Termination argument:
 - If $(\mathcal{L}, \sqsubseteq)$ satisfies a.c.c., so does the space of annotations $(N \rightarrow \mathcal{L}, \sqsubseteq^*)$
 - $\text{OUT}_0 \sqsubseteq^* \text{OUT}_1 \sqsubseteq^* \ldots$, where OUT_i is the OUT annotation at iteration i
 - This sequence eventually stabilizes \Rightarrow algorithm terminates
Local vs. Global constraints

- We had two specifications for available expressions
 - **Global**: e available at entry of n iff for every path from s to n in G:
 1. the expression e is evaluated along the path
 2. after the last evaluation of e along the path, no variables in e are overwritten
 - **Local**: IN, OUT is least annotation such that
 1. $IN[s] = \top$
 2. For all $n \in N$, $post_{AE}(n, IN[n]) \sqsubseteq OUT[n]$
 3. For all $p \rightarrow n \in E$, $OUT[p] \sqsubseteq IN(n)$

- *Why are these specifications the same?*
Coincidence

• Let \((\mathcal{L}, \subseteq, \sqcup, \bot, \top)\) be an abstract domain and let \(\text{post}_\mathcal{L}\) be a transfer function.
• “Global specification” is formulated as join over paths:

\[
\text{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_\mathcal{L}(\pi, \top)
\]

where \(\text{Path}(s, n)\) denotes set of paths from \(s\) to \(n\), and \(\text{post}_\mathcal{L}\) is extended to paths by taking

\[
\text{post}_\mathcal{L}(n_1 n_2 \ldots n_k, \top) = \text{post}_\mathcal{L}(n_k, \ldots, \text{post}_\mathcal{L}(n_1, \top))
\]
Coincidence

Let \((\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)\) be an abstract domain and let \(\text{post}_\mathcal{L}\) be a transfer function.
- “Global specification” is formulated as join over paths:

\[
JOP[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_\mathcal{L}(\pi, \top)
\]

where \(\text{Path}(s, n)\) denotes set of paths from \(s\) to \(n\), and \(\text{post}_\mathcal{L}\) is extended to paths by taking

\[
\text{post}_\mathcal{L}(n_1 n_2 \ldots n_k, \top) = \text{post}_\mathcal{L}(n_k, \ldots, \text{post}_\mathcal{L}(n_1, \top))
\]

Coincidence theorem (Kildall, Kam & Ullman): let \((\mathcal{L}, \sqsubseteq, \sqcup, \perp, \top)\) be an abstract domain satisfying the a.c.c., \(\text{post}_\mathcal{L}\) be a distributive transfer function, and \(\text{IN/OUT}\) be least solution to

1. \(\text{IN}[s] = \top\)
2. For all \(n \in N\), \(\text{post}_\mathcal{L}(n, \text{IN}[n]) \sqsubseteq \text{OUT}[n]\)
3. For all \(p \rightarrow n \in E\), \(\text{OUT}[p] \sqsubseteq \text{IN}(n)\)

Then for all \(n\), \(JOP[n] = \text{IN}[n]\).
Coincidence

- Let \((\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top) \) be an abstract domain and let \(\text{post}_\mathcal{L} \) be a transfer function.
 - “Global specification” is formulated as join over paths:
 \[
 \text{JOP}[n] = \bigsqcup_{\pi \in \text{Path}(s, n)} \text{post}_\mathcal{L}(\pi, \top)
 \]
 where \(\text{Path}(s, n) \) denotes set of paths from \(s \) to \(n \), and \(\text{post}_\mathcal{L} \) is extended to paths by taking
 \[
 \text{post}_\mathcal{L}(n_1 n_2 \ldots n_k, \top) = \text{post}_\mathcal{L}(n_k, \ldots, \text{post}_\mathcal{L}(n_1, \top))
 \]

- Coincidence theorem (Kildall, Kam & Ullman): let \((\mathcal{L}, \sqsubseteq, \sqcup, \bot, \top) \) be an abstract domain satisfying the a.c.c., \(\text{post}_\mathcal{L} \) be a \textit{distributive} transfer function, and \(\text{IN/OUT} \) be least solution to
 1. \(\text{IN}[s] = \top \)
 2. For all \(n \in N \), \(\text{post}_\mathcal{L}(n, \text{IN}[n]) \sqsubseteq \text{OUT}[n] \)
 3. For all \(p \to n \in E \), \(\text{OUT}[p] \sqsubseteq \text{IN}(n) \)

Then for all \(n \), \(\text{JOP}[n] = \text{IN}[n] \).

- \(\text{post}_\mathcal{L} \) is \textit{distributive} if for all \(x, y \in \mathcal{L} \), \(\text{post}_\mathcal{L}(n, x \sqcup y) = \text{post}_\mathcal{L}(n, x) \sqcup \text{post}_\mathcal{L}(n, y) \)
Available expressions

Recall transfer function $post_{AE}$ for available expressions:

$$post_{AE}(x = e, E) = \{ e' \in (E \cup \{e\}) : x \text{ not in } e' \}$$

$post_{AE}$ is distributive:

$$post_{AE}(x = e, E_1 \cap E_2) = \{ e' \in ((E_1 \cap E_2) \cup \{e\}) : x \text{ not in } e' \}$$

$$= \{ e' \in E_1 \cup \{e\} : x \text{ not in } e' \} \cap \{ e' \in (E_2 \cup \{e\}) : x \text{ not in } e' \}$$

$$= post_{AE}(x = e, E_1) \cap post_{AE}(x = e, E_2)$$
Constant propagation

Is $post_{cp}$ distributive?
Constant propagation

Is \(\text{post}_{\text{CP}} \) distributive?

\[
\text{post}_{\text{CP}}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) = \text{post}_{\text{CP}}(x := x + y, \{x \mapsto \top, y \mapsto \top\}) \\
= \{x \mapsto \top, y \mapsto \top\}
\]
Constant propagation

Is $post_{CP}$ distributive?

$$post_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\}) = post_{CP}(x := x + y, \{x \mapsto \top, y \mapsto \top\})$$

$$= \{x \mapsto \top, y \mapsto \top\}$$

$$post_{CP}(x := x + y, \{x \mapsto 0, y \mapsto 1\}) = \{x \mapsto 1, y \mapsto 1\}$$

$$post_{CP}(x := x + y, \{x \mapsto 1, y \mapsto 0\}) = \{x \mapsto 1, y \mapsto 0\}$$

$$\{x \mapsto 1, y \mapsto 1\} \sqcup \{x \mapsto 1, y \mapsto 0\} = \{x \mapsto 1, y \mapsto \top\}$$
Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts $\text{gen}(n)$ and killed facts $\text{kill}(n)$
- Define $\text{post}_L(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.
Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts $\text{gen}(n)$ and killed facts $\text{kill}(n)$
- Define $\text{post}_L(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for existential analyses: a fact holds at n if it holds along some path to n
 - E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n
 - \supseteq used for universal analyses: a fact holds at n if it holds along all paths to n
 - E.g., an expression is available at n if it is available along all paths to n
Gen/kill analyses

- Suppose we have a finite set of data flow “facts”
- Elements of the abstract domain are sets of facts
- For each basic block n, associate a set of generated facts $\text{gen}(n)$ and killed facts $\text{kill}(n)$
- Define $\text{post}_L(n, F) = (F \setminus \text{kill}(n)) \cup \text{gen}(n)$.
- The order on sets of facts may be \subseteq or \supseteq
 - \subseteq used for existential analyses: a fact holds at n if it holds along some path to n
 - E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
 - \supseteq used for universal analyses: a fact holds at n if it holds along all paths to n
 - E.g., an expression is available at n if it is available along all paths to n
- In either case, post_L is monotone and distributive

 \[
 \text{post}_L(n, F \cup G) = ((F \cup G) \setminus \text{kill}(n)) \cup \text{gen}(n)
 = ((F \setminus \text{kill}(n)) \cup (G \setminus \text{kill}(n))) \cup \text{gen}(n)
 = ((F \setminus \text{kill}(n)) \cup \text{gen}(n)) \cup (((G \setminus \text{kill}(n))) \cup \text{gen}(n))
 = \text{post}_L(n, F) \cup \text{post}_L(n, G)
 \]
Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. `javac` does this by default
- Possibly-uninitialized variables as a dataflow analysis problem:
Possibly-uninitialized variables analysis

• A variable \(x \) is **possibly-uninitialized** at a location \(n \) if there is some path from start to \(n \) along which \(x \) is never written to.
• If \(n \) uses an uninitialized variable, that could indicate undefined behavior
 • Can catch these errors at compile time using possibly-uninitialized variable analysis
 • E.g. javac does this by default
• Possibly-uninitialized variables as a dataflow analysis problem:
 • Abstract domain: \(2^{\text{Var}} \) (each \(V \in 2^{\text{Var}} \) represents a set of possibly-uninitialized vars)
 • *Existential* \(\Rightarrow \) order is \(\subseteq \), join is \(\cup \), \(\top \) is \(\text{Var} \), \(\bot \) is \(\emptyset \)
Possibly-uninitialized variables analysis

- A variable x is **possibly-uninitialized** at a location n if there is some path from start to n along which x is never written to.
- If n uses an uninitialized variable, that could indicate undefined behavior
 - Can catch these errors at compile time using possibly-uninitialized variable analysis
 - E.g. javac does this by default
- Possibly-unintialized variables as a dataflow analysis problem:
 - Abstract domain: 2^Var (each $V \in 2^\text{Var}$ represents a set of possibly-uninitialized vars)
 - *Existential* \Rightarrow order is \subseteq, join is \cup, \top is Var, \bot is \emptyset
 - $\text{kill}(x := e) = \{x\}$
 - $\text{gen}(x := e) = \emptyset$
Reaching definitions analysis

- A definition is a pair \((n, x)\) consisting of a basic block \(n\), and a variable \(x\) such that \(n\) contains an assignment to \(x\).
- We say that a definition \((n, x)\) reaches a node \(m\) if there is a path from start to \(m\) such that the latest definition of \(x\) along the path is at \(n\).
- Reaching definitions as a data flow analysis:
Reaching definitions analysis

- A definition is a pair \((n, x)\) consisting of a basic block \(n\), and a variable \(x\) such that \(n\) contains an assignment to \(x\).

- We say that a definitoin \((n, x)\) reaches a node \(m\) if there is a path from start to \(m\) such that the latest definition of \(x\) along the path is at \(n\).

- Reaching definitions as a data flow analysis:
 - Abstract domain: \(2^{N \times \text{Var}}\)
 - \text{Existential} \Rightarrow\text{order is } \subseteq, \text{join is } \cup, \top \text{ is } N \times \text{Var}, \bot \text{ is } \emptyset
 - \text{kill}(n) = \{(m, x) : m \in N, (x := e) \text{ in } n\}
 - \text{gen}(n) = \{(n, x) : (x := e) \text{ in } n\}
In a compiler, program analysis is used to inform optimization
 • Outside of compilers: verification, testing, software understanding...

Dataflow analysis is a particular *family* of program analyses, which operates by solving a constraint system over an ordered set
 • Gen/kill analysis are a sub-family with nice properties
 • The basic idea of solving constraints systems over ordered sets appears in lots of different places!
 • Parsing – computation of first, follow, nullable
 • Networking – computing shortest paths
 • Automated planning – distance-to-goal estimation
 • ...

Wrap-up