Lexing
Compiler phases (simplified)

- Source text
- Lexing
- Token stream
- Parsing
- Abstract syntax tree
- Translation
- Intermediate representation
- Optimization
- Code generation
- Assembly
The **lexing** (or **lexical analysis**) phase of a compiler breaks a stream of characters (source text) into a stream of **tokens**.

- Whitespace and comments often discarded

A **token** is a sequence of characters treated as a unit (a **lexeme**) along with an **token type**:

- **identifier tokens**: `x`, `y`, `foo`, ...
- **integer tokens**: `0`, `1`, `-14`, `512`, ...
- **if tokens**: `if`
 - ...

Algebraic datatypes are a convenient representation for tokens

```plaintext
| type token = IDENT of string |
| INT of int |
| IF |
| ... |
```
// compute absolute value
if (x < 0) {
 return -x;
} else {
 return x;
}
Implementing a lexer

• Option 1: write by hand
• Option 2: use a lexer generator
 • Write a lexical specification in a domain-specific language
 • Lexer generator compiles specification to a lexer (in language of choice)
• Many lexer generators available
 • lex, flex, ocamllex, jflex, ...
Formal Languages

• An **alphabet** \(\Sigma \) is a finite set of symbols (e.g., \(\{0, 1\} \), ASCII, unicode, tokens).

• A **word** (or **string**) over \(\Sigma \) is a finite sequence \(w = w_1 w_2 w_3 ... w_n \), with each \(w_i \in \Sigma \).
 - The **empty word** \(\epsilon \) is a word over any alphabet
 - The set of all words over \(\Sigma \) is typically denoted \(\Sigma^* \)
 - E.g., \(01001 \in \{0, 1\}^* \), **embiggen** \(\in \{a, ..., z\}^* \)

• A **language** over \(\Sigma \) is a set of words over \(\Sigma \)
 - Integer literals form a language over \(\{0, ..., 9, -\} \)
 - The keywords of OCaml form a (finite) language over ASCII
 - Syntactically-valid Java programs forms an (infinite) language over Unicode
Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
 - E.g., $0|(1(0|1)^*)$ recognizes the language of all binary sequences without leading zeros
- Abstract syntax of regular expressions:

 \[
 \text{<RegExp>} ::= \epsilon \quad \text{Empty word} \\
 \quad | \Sigma \quad \text{Letter} \\
 \quad | \text{<RegExp><RegExp>} \quad \text{Concatenation} \\
 \quad | \text{<RegExp>|<RegExp>} \quad \text{Alternative} \\
 \quad | \text{<RegExp>\^} \quad \text{Repetition}
 \]

 \[L(\epsilon) = \{\epsilon\} \]
 \[L(a) = \{a\} \]
 \[L(R_1 R_2) = \{uv : u \in L(R_1) \land v \in L(R_2)\} \]
 \[L(R_1 | R_2) = L(R_1) \cup L(R_2) \]
 \[L(R_\^) = \{\epsilon\} \cup L(R) \cup L(RR) \cup L(RRR) \cup \ldots\]
Regular expressions (regex)

- Regular expressions are one mechanism for describing languages
 - E.g., \(0|(1(0|1)^*)\) recognizes the language of all binary sequences without leading zeros
- Abstract syntax of regular expressions:

\[
\langle \text{RegExp} \rangle ::= \epsilon \quad \text{Empty word}
\]

\[
| \Sigma \quad \text{Letter}
\]

\[
| \langle \text{RegExp} \rangle \langle \text{RegExp} \rangle \quad \text{Concatenation}
\]

\[
| \langle \text{RegExp} \rangle | \langle \text{RegExp} \rangle \quad \text{Alternative}
\]

\[
| \langle \text{RegExp} \rangle ^* \quad \text{Repetition}
\]

- Meaning of regular expressions:

\[
\mathcal{L}(\epsilon) = \{\epsilon\}
\]

\[
\mathcal{L}(a) = \{a\}
\]

\[
\mathcal{L}(R_1R_2) = \{uv : u \in \mathcal{L}(R_1) \land v \in \mathcal{L}(R_2)\}
\]

\[
\mathcal{L}(R_1|R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)
\]

\[
\mathcal{L}(R^*) = \{\epsilon\} \cup \mathcal{L}(R) \cup \mathcal{L}(RR) \cup \mathcal{L}(RRR) \cup \ldots
\]
ocamllex regex concrete syntax

• ‘a’: letter
• “abc”: string (equiv. ’a”b”c’)
• R+: one or more repetitions of R (equiv. RR*)
• R?: zero or one R (equiv. R | ϵ)
• [’a’−’z’]: character range (equiv. ’a’ | ’b’ | . . . | ’z’)
• R as x: bind string matched by R to variable x
Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification

Example lexical specification:

- token type
- pattern

\[
\begin{align*}
\text{identifier} &= [a-zA-Z][a-zA-Z0-9]^* \\
\text{integer} &= [1-9][0-9]^* \\
\text{plus} &= +
\end{align*}
\]
Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification

Example lexical specification:

- **identifier**

 \[
 \text{identifier} = [a-zA-Z][a-zA-Z0-9]^*
 \]

- **integer**

 \[
 \text{integer} = [1-9][0-9]^*
 \]

- **plus**

 \[
 \text{plus} = +
 \]

- “foo+42+bar” → \textbf{identifier} “foo”, plus “+”, integer “42”, plus “+”, identifier “bar”

Typically, lexical spec associates an action to each token type, which is code that is evaluated on the lexeme (often: produce a token value)
Lexer generators

Lexer generators take as input a lexical specification, and output code that tokenizes a character stream w.r.t. that specification.

Example lexical specification:

- **Token type**: `identifier`
 - Pattern: `[^a-zA-Z0-9] + [a-zA-Z0-9]*`
- **Token type**: `integer`
 - Pattern: `[^\d] + [0-9]*`
- **Token type**: `plus`
 - Pattern: `[^\+] + `

- "foo+42+bar" → `identifier "foo", plus "+", integer "42", plus "+", identifier "bar"`

- Typically, lexical spec associates an action to each token type, which is code that is evaluated on the lexeme (often: produce a token value)
Disambiguation

• May be more than one way to lex a string:

\[
\begin{align*}
IF & = \text{if} \\
IDENT & = [a-zA-Z][a-zA-Z0-9]^* \\
INT & = [1-9][0-9]^* \\
LT & = < \\
\end{align*}
\]

...

• Input string if \(x < 10 \):
 \text{IDENT “ifx”, LT, INT 10} \text{ or } \text{IF, IDENT “x”, LT, INT 10}

• Input string if \(x < 9 \):
 \text{IF, IDENT “x”, LT, INT 9} \text{ or } \text{IDENT “if”, IDENT “x”, LT, INT 9}
Disambiguation

• May be more than one way to lex a string:

\[
\begin{align*}
IF &= if \\
IDENT &= [a-zA-Z][a-zA-Z0-9]^* \\
INT &= [1-9][0-9]^* \\
LT &= < \\
\end{align*}
\]

...

• Input string if\(x<10\): \boxed{IDENT “ifx”, LT, INT 10} or \boxed{IF, IDENT “x”, LT, INT 10}?

• Input string if\(x<9\): \boxed{IF, IDENT “x”, LT, INT 9} or \boxed{IDENT “if”, IDENT “x”, LT, INT 9}?

• Two rules sufficient to disambiguate (remember these!)
 1. The lexer is greedy: always prefer longest match
 2. Order matters: prefer earlier patterns
How do lexer generators work?
Lexical specification is compiled to a *deterministic finite automaton* (DFA), which can be executed efficiently.

Typical pipeline: lexical specification \rightarrow nondeterministic FA \rightarrow DFA.

Kleene’s theorem: regular expressions, NFAs, and DFAs describe the same class of languages.

- A language is *regular* if it is accepted by a regular expression (equiv., NFA, DFA).
A **deterministic finite automaton** (DFA) $A = (Q, \Sigma, \delta, s, F)$ consists of

- Q: finite set of states
- Σ: finite alphabet
- $\delta: Q \times \Sigma \to Q$: transition function
 - Every state has *exactly* one outgoing edge per letter
- $s \in Q$: initial state
- $F \subseteq Q$: final (accepting) states

DFA accepts a string $w = w_1 \ldots w_n \in \Sigma^*$ iff $\delta(\ldots\delta(\delta(s, w_1), w_2), \ldots, w_n) \in F$.
A non-deterministic finite automaton (NFA) $A = (Q, \Sigma, \Delta, s, F)$ generalization of a DFA, where

- $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$: transition relation
 - A state can have more than one outgoing edge for a given letter
 - A state can have no outgoing edges for a given letter
 - A state can have ϵ-transitions (read no input, but change state)
A non-deterministic finite automaton (NFA) \(A = (Q, \Sigma, \Delta, s, F) \) generalization of a DFA, where

- \(\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q \): transition relation
 - A state can have more than one outgoing edge for a given letter
 - A state can have no outgoing edges for a given letter
 - A state can have \(\epsilon \)-transitions (read no input, but change state)

NFA accepts a string \(w = w_1 \ldots w_n \in \Sigma^* \) iff there exists a \(w \)-labeled path from \(s \) to an final state (i.e., there is some sequence \((q_0, u_1, q_1), (q_1, u_2, q_2), \ldots, (q_{m-1}, u_m, q_m) \) with \(q_0 = s \), \(q_m \in F \), and \(u_1 u_2 \ldots u_m = w \).
Case: ϵ (empty word)
Case: a (letter)
Case: $R_1 R_2$ (concatenation)
Regex \rightarrow NFA

Case: $R_1 R_2$ (concatenation)
Case: $R_1 | R_2$ (alternative)
Case: $R_1 \mid R_2$ (alternative)
Regex \rightarrow NFA

Case: R^* (iteration)

Diagram:
- Start state s_0
- Final state s_f
- Transition箭头 from start to s_0
Case: R^* (iteration)
• For any NFA, there is a DFA that recognizes the same language
• Intuition: the DFA simulates all possible paths of the NFA simultaneously
 • There is an unbounded number of paths but we only care about the “end state” of each path, not its history
 • States of the DFA track the set of possible states the NFA could be in
 • DFA accepts when some path accepts
NFA → DFA

\[
\begin{align*}
\text{s0} & \xrightarrow{a} \text{s1} \\
\text{s1} & \xrightarrow{a} \text{s2} \\
\text{s2} & \xrightarrow{\epsilon} \text{sf} \\
\end{align*}
\]
NFA → DFA
NFA → DFA
NFA → DFA

start → s_0 → s_1 → s_2 → s_f

\emptyset → a → s_0 → s_1, s_f → s_2 → a
NFA \rightarrow DFA

- States: s_0, s_1, s_2, s_f
- Start state: s_0
- Final states: s_2, s_f
- Transitions:
 - $s_0 \xrightarrow{a} s_1$
 - $s_1 \xrightarrow{a} s_2$
 - $s_2 \xrightarrow{\epsilon} s_f$
 - $s_0 \xrightarrow{b} \emptyset$
 - $\emptyset \xrightarrow{a} \emptyset$
 - $\emptyset \xrightarrow{b} \emptyset$

The diagram shows the conversion process from an NFA to a DFA.
NFA → DFA
NFA \rightarrow DFA
NFA → DFA
NFA → DFA
NFA \rightarrow DFA

\begin{align*}
\text{start} & \rightarrow s_0 \quad a \rightarrow s_1 \quad a \rightarrow s_2 \quad \epsilon \rightarrow s_f \\
\quad b & \rightarrow s_1 \quad b \rightarrow s_2 \\
\end{align*}
NFA → DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
 \[\epsilon-cl(S) = \text{smallest set that contains } S \text{ and such that } \forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S \]
NFA → DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
 $\epsilon-cl(S) =$ smallest set that contains S and such that $\forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S$
- Construct DFA as follows:
 - $Q' =$ set of all ϵ-closed subsets of Q
 - $\delta'(S, a) =$ ϵ-closure of $\{q_2 : \exists q_1 \in S. (q_1, a, q_2) \in \Delta\}$
 - $s' =$ ϵ-closure of $\{s\}$
 - $F' =$ $\{S \in Q' : S \cap F \neq \emptyset\}$
 - Crucial optimization: only construct states that are reachable from s'
 - Less crucial, still important: minimize DFA (Hopcroft's algorithm, $O(n \log n)$)
NFA \rightarrow DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
 ϵ-\text{cl}(S) = \text{smallest set that contains } S \text{ and such that } \forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S$
- Construct DFA as follows:
 - $Q' = \text{set of all } \epsilon$-closed subsets of Q
 - $\delta'(S, a) = \epsilon$-\text{closure of}\{q_2 : \exists q_1 \in S. (q_1, a, q_2) \in \Delta\}$
 - $s' = \epsilon$-\text{closure of } \{s\}$
 - $F' = \{S \in Q' : S \cap F \neq \emptyset\}$
- Crucial optimization: only construct states that are reachable from s'
NFA \rightarrow DFA, formally

- Have: NFA $A = (Q, \Sigma, \delta, s, F)$. Want: DFA $A' = (Q', \Sigma, \delta', s', F')$ that accepts same language.
- For any $S \subseteq Q$, define the ϵ-closure of S to be the set of states reachable from S by ϵ transitions (incl. S)
 ϵ-$cl(S) =$ smallest set that contains S and such that $\forall (q, \epsilon, q') \in \Delta, q \in S \Rightarrow q' \in S$
- Construct DFA as follows:
 - Q' = set of all ϵ-closed subsets of Q
 - $\delta'(S, a) =$ ϵ-closure of$\{q_2 : \exists q_1 \in S. (q_1, a, q_2) \in \Delta\}$
 - $s' =$ ϵ-closure of $\{s\}$
 - $F' = \{S \in Q' : S \cap F \neq \emptyset\}$
- Crucial optimization: only construct states that are reachable from s'
- Less crucial, still important: minimize DFA (Hopcroft’s algorithm, $O(n \log n)$)
Lexical specification → String classifier

• Want: partial function \(\text{match} \) mapping strings to token types
 • \(\text{match}(s) = \) highest-priority token type whose pattern matches \(s \) (undef otherwise)

• Process:
 1. Convert each pattern to an NFA. Label accepting states w/ token types.
 2. Take the union of all NFAs
 3. Convert to DFA
 • States of the DFA labeled with sets of token types.
 • Take highest priority.

\[
\begin{align*}
\text{identifier} &= [a - zA - Z][a - zA - Z0 - 9]^* \\
\text{integer} &= [1 - 9][0 - 9]^* \\
\text{float} &= ([1 - 9][0 - 9]^*|0).[0 - 9]^+
\end{align*}
\]
$\{i_0, n_0, f_0\}$
\[
\begin{align*}
\{i_0, n_0, f_0\} & \rightarrow \{i_1\} \\
& \text{identifier} \\
\{i_0, n_0, f_0\} & \rightarrow \{f_1\} \\
& \{n_1, f_1\} \\
\{i_0, n_0, f_0\} & \rightarrow \{n_1, f_1\} \\
& \text{int}
\end{align*}
\]
\[[a - zA - Z 0 - 9] \]

\[\{i_0, n_0, f_0\} \]

\[0 \]

\[[1 - 9] \]

\[\{n_1, f_1\} \]

\[\{i_1\} \]

Identifier

\[\text{int} \]
\[
[a - zA - Z0 - 9]
\]
\[[a - zA - Z0 - 9] \]

\[
\begin{array}{c}
\{i_0, n_0, f_0\} \\
\{i_1\} \\
\{n_1, f_1\} \\
\{f_1\} \\
\{f_2\}\end{array}
\]

identifier

int

float
Compiler phases (simplified)

- Source text
 - Lexing
 - Token stream
 - Parsing
 - Abstract syntax tree
 - Translation
 - Intermediate representation
 - Optimization
 - Code generation
 - Assembly