
Page 1 of 4

Princeton University

COS 217: Introduction to Programming Systems

The Meminfo Tool

What is it?

Meminfo is a tool to help you analyze your application's dynamic memory management.

It can help you find memory leaks. It may help you find other dynamic memory

management errors as well. It was written by RJ Liljestrom, a former COS 217 student,

building upon an earlier tool named Memstat written by Bob Dondero.

How do I use it?

Suppose you wish to use Meminfo to help you debug a program named mypgm. Further

suppose that mypgm consists of source code files mysourcecode1.c and

mysourcecode2.c. Assuming that you've configured your armlab programming

environment as described in the first precept, follow these steps:

(1) Issue a gcc217m (instead of a gcc217) command to preprocess, compile, and

assemble mysourcecode1.c and mysourcecode2.c:

gcc217m –c mysourcecode1.c

gcc217m –c mysourcecode2.c

(2) Issue a gcc217m (instead of a gcc217) command to link mysourcecode1.o and

mysourcecode2.o, thus creating executable file mypgm:

gcc217m mysourcecode1.o mysourcecode2.o –o mypgm

Note that steps 1 and 2 can be combined by issuing a single command:

gcc217m mysourcecode1.c mysourcecode2.c –o mypgm

(3) Execute mypgm as usual, by issuing a command consisting of its name (and

command-line arguments, as appropriate):

./mypgm arg1 arg2 ...

Doing so generates a text file in the current directory named meminfoX.out, where X

is the id of the process in which mypgm executed.

(4) Issue a ls command to determine the name of the meminfoX.out file.

Page 2 of 4

(5) Optionally, use a text editor to examine the meminfoX.out file:

emacs meminfoX.out

Note that the file contains one line for each call to malloc(), calloc(),

realloc(), and free() performed by process X.

(6) Use the meminforeport program to generate (to stdout) a summary report of

meminfoX.out, and thus of process X’s dynamic memory management. To do that

issue a command of this form:

meminforeport meminfoX.out

The report consists of four sections. The first section is entitled Errors. It contains error

messages describing allocated-but-not-freed memory, and corrupted memory chunks.

The Errors section should contain no messages. If it does contain messages, then your

program certainly contains the dynamic memory management errors described.

The second section is entitled Summary Statistics. It shows the maximum bytes allocated

at any one time by the application, and the total number of bytes allocated by the

application.

The third section is entitled Statistics by Line. It shows the number of bytes allocated and

freed on a line-by-line basis. A positive number indicates a memory allocation; a

negative number indicates a memory free. The section ends with a total, indicating the

total number of bytes allocated/freed by all lines. The total should be 0.

The fourth section is entitled Statistics by Compilation Unit. It shows the total number of

bytes allocated/freed by each compilation unit, where a compilation unit is a .c file along

with all files that it #includes. The section ends with a total, indicating the total

number of bytes allocated/freed by all compilation units. The total should be 0.

If the total number of bytes allocated/freed by all lines or compilation units is not 0, then

your application contains a dynamic memory management error. A positive total

indicates memory leaks. In that case you should analyze the more detailed information in

the report to help you determine which dynamically allocated memory is not being freed.

A negative total indicates multiple frees of the same memory chunk. In that case you

should analyze the more detailed information in the report to help you determine which

dynamically allocated memory is being freed more than once.

Incidentally, use the -s option:

meminforeport -s meminfoX.out

to generate a one-line summary report that shows only the total net byte count and the

number of errors.

Page 3 of 4

How does it work?

The code that comprises Meminfo is available in directory

/u/cos217/bin/ARM/meminfo. Please study it. Specifically, that directory

contains these files:

meminfo.h

The meminfo.h file is the interface file for the Meminfo tool. The gcc217m

command automatically includes meminfo.h into each .c file that it

preprocesses.

meminfo.h declares functions Meminfo_malloc(),

Meminfo_calloc(), Meminfo_realloc(), and Meminfo_free(). It

also uses the C preprocessor to alter your .c files so each instance of the text

malloc is changed to Meminfo_malloc, each instance of calloc is

changed to Meminfo_calloc, each instance of realloc is changed to

Meminfo_realloc, and each instance of free is changed to

Meminfo_free. In that way, the Meminfo tool "intercepts" your program's

calls to C's standard dynamic memory management functions.

meminfo.c

The meminfo.c file contains the definitions of the Meminfo_malloc(),

Meminfo_calloc(), Meminfo_realloc(), and Meminfo_free()

functions.

The first time any of those functions is called, it creates a new file named

meminfoX.out. Subsequently, the function writes a line to meminfoX.out

containing appropriate data: a number indicating which of the four functions has

been called, the name of the file that called the function, the number of the line

that called the function, the address of the memory chunk being affected, and the

number of bytes in the affected memory chunk. It then proceeds to call the

corresponding standard C function.

With one complication... Unknown to your application, the

Meminfo_malloc(), Meminfo_calloc(), and Meminfo_realloc()

functions actually allocate a chunk of memory that is slightly larger than you

requested, and store extra information in a hidden header at the beginning, and a

hidden footer at the end of the memory chunk. The Meminfo_realloc() and

Meminfo_free() functions then use that hidden information to write

appropriate data to meminfoX.out.

Page 4 of 4

As a bonus, the Meminfo_free() and Meminfo_realloc() functions

write an error line to meminfoX.out if they discover that the header and footer

of the given memory chunk has been corrupted by the client program.

libmeminfo.a

The libmeminfo.a file is a Linux library (alias archive) that contains the

compiled version of meminfo.c. It was created from the meminfo.o file

using the command:

ar rs libmeminfo.a meminfo.o

See the man pages if you would like to learn more about the ar command.

gcc217m

The gcc217m file contains a Bash script which calls gcc with appropriate

options. It uses the -include meminfo.h option so gcc includes

meminfo.h into each .c file that it preprocesses. It uses the -

L$MEMINFODIR option to command gcc to look in directory $MEMINFODIR

(that is, /u/cos217/bin/ARM/meminfo) for libraries at link time. It uses

the -lmeminfo option to command gcc to link with the libmeminfo.a

library.

See the man pages for gcc if you would like to learn more about the –L and –l

options to gcc.

meminforeport.c

The meminforeport.c file contains the source code for the

meminforeport program.

Note that it uses an ADT named DynArray. The DynArray ADT is described

in precepts. The source code for the DynArray ADT is provided as a precept

handout. Also note that it uses an ADT named PtrTable. The PtrTable

ADT is a hash table whose keys are numbers and whose values are arbitrary

objects. It is similar to the SymTable ADT that often is given as a programming

assignment in COS 217; for that reason, the source code for the PtrTable ADT

is not accessible.

meminforeport

The meminforeport file is the executable binary file created from

meminforeport.c.

Copyright © 2019 by Robert M. Dondero, Jr.

