-

COS 217: Introduction to Programming Systems

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec == 31 Oct

% PRINCETON UNIVERSITY

https://unsplash.com/@bradleyhowington

-

The Decimal Number System

Cowbirds in Love #43 - Sanjay Kulkacek

Name
e From Latin decem (“ten”) 1 [oh, you must be

using base 4. See, [2o

Characteristics Jusebase 10. I

e For us, these symbols (Not universal ...)

01234567829

F&r;%gsgend from the West Arabic 0|1|12(3|4(5|6(7|8|9
Arabic-Indic Y IY Y lElolTIYIALS
rAvEm Anqbicindic VY[V F[O|T[VIA|N
evanagari o ke 9 | £
g LRE N 8 Every base is base 10.
Tamil & |o_|m | & |[@ g |oT | o

https://commons.wikimedia.org/wiki/File:Arabic_numerals-en.svg

e Positional
e 2945 # 2495

« 2945 = (2*103) + (9*102) + (4*10!) + (5*10°)

of (Most) people use the decimal number system m
\§

https://commons.wikimedia.org/wiki/File:Arabic_numerals-en.svg
https://web.archive.org/web/20160505151914/http:/cowbirdsinlove.com/43

(

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as
on or off, true or false, molten or frozen, presence or absence of a signal.
From late Latin binarius (“consisting of two”), from classical Latin bis (“twice”)

Characteristics
e Twosymbols: 0 1
* Positional: 1010; # 11004

Most (digital) computers use the binary number system m
Terminology

e Bit: a single binary symbol (“binary digit”)
e Byte: (typically) 8 bits
* Nibble / Nybble: 4 bits - we'll see a more common name for 4 bits soon.

-
Decimal-Binary Equivalence

Decimal Binary Decimal Binary

0 0 16 10000

1 1 17 10001

2 10 18 10010

3 11 19 10011

4 100 20 10100

5 101 21 10101

6 110 22 10110

7 111 23 10111

8 1000 24 11000

) 1001 25 11001

10 1010 26 11010

11 1011 27 11011

12 1100 28 11100

13 1101 29 11101

14 1110 30 11110

15 1111 31 11111

4
\ J

-

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

100101,

(1%25) + (0%24) + (0*23) + (1%22) + (0%21) + (1*29)
32 + 0 + 0 + 4 + 0 + 1
37 \

Most-significant
bit (msb)

Least-significant
bit (Isb)

-

Integer-Binary Conversion

(Decimal) Integer to binary: do the reverse
e Determine largest power of 2 that’s < number; write template

e Fill in template

[

Integer-Binary Conversion

Integer to binary division method

e Repeatedly divide by 2, consider remainder

3 1
1

HN®& O o
NSNS NN
MNNMNNMNNDNMDDN
o nwonn
O N B OO®
AXX 0 xXXD
HoOoOHKOHR

A

Read from bottom
to top: 100101,

[

The Hexadecimal Number System

Name
e From ancient Greek &€ (hex, “six”) + Latin-derived decimal

Characteristics
e Sixteen symbols
e 0123456789ABCDEF
e Positional
 A13D, # 3DA1,

Computer programmers often use hexadecimal (“hex”)
e In C: Ox prefix (OxA13D, etc.)

That’s a
zero, not
a letter O

(

Binary-Hexadecimal Conversion

11

Observation:
e 161 = 24, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

1010000100111101, Number of_ bits in binary number
A 1 3 Dy not a multiple of 47 =

pad with zeros on left

Hexadecimal to binary

A 1 3 D Discard leading zeros from binary
H
1010000100111101g number if appropriate

-

Integer-Hexadecimal Conversion

12

Hexadecimal to (decimal) integer: expand using positional notation

25; = (2*16') + (5*169)
32 + 5
37

Integer to hexadecimal: use the division method

37 / 16
2 / 16

oN
A X
N O

I Read from bottom
to top: 25,

-
|> Are you 5397

Convert binary 101010 into decimal and hex

21 decimal, A2 hex
21 decimal, A8 hex
18 decimal, 2A hex
42 decimal, 2A hex

o 0 w @

hint: convert to hex first

challenge: once you've locked in and discussed with a

13 neighbor, figure out why this slide's title is what it is.

[

The Octal Number System

Name
e “octo” (Latin) = eight

Characteristics
e Eight symbols
e 01234567
e Positional
e 17430 # 73140

Computer programmers.sometimes use octal (so does Mickey!)
e In C: O prefix (01743, etc.)

‘cmoretti@tars:tmp$ls -1 myFile
-rw-r-=—r-=— 1 cmoretti wheel © Sep 7 10:58 myFile
‘cmoretti@tars:tmp$chmod 755 myFile
‘cmoretti@tars:tmp$ls -1 myFile

-rwxr=xr-=x 1 cmoretti wheel © Sep 7 10:58 myFile

14

)
e
Ll
O
Ll
—
Z

15|

https://unsplash.com/@photoshobby

(

Representing Unsigned (Non-Negative) Integers

16|

Mathematics
* Non-negative integers’ range is O to «

Computers
* Range limited by computer’s word size
* Word size is n bits = range is O to 2" - 1 representing with an n bit binary number
e Exceed range = overflow

Typical computers today
* n =32 or 64, so range is 0 to 232 - 1 (~4 billion) or 254 - 1 (huge ... ~1.8e19)

Pretend computer for these slides, hereafter on these slides:
e Assume n =4, so range is 0 to 24 - 1 (15)
 All points generalize to larger word sizes like 32 and 64

-

Representing Unsigned Integers

17

On 4-bit pretend computer

Unsigned
Integer Rep
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

-

Adding Unsigned Integers

18|

Addition

3 0011,
+ 10 + 10104

13 1101,
111
7 0111,

+ 10 + 10104

1 0001

Results are mod 24
7+10=17
17mod 16 =1

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

How would you
detect overflow
programmatically?

-

Subtracting Unsigned Integers

19

Subtraction

111
10 10105
- 7 - 0111,
3 0011,
1
3 0011,
- 10 - 10104
9 1001,

Results are mod 24
l 3-10=-7
-7 mod 16 =9

Start at right column
Proceed leftward
Borrow when necessary

Beware of overflow

How would you
detect overflow
programmatically?

)
R
X
)
)
—
)
O
&
>
-
)
=
)
©
lel)
O
-
—
O
O
=
&
O
-

-

Obsolete Attempt #1: Sign-Magnitude

- Definition o |
-7 1111 High-order bit indicates sign
-6 1110 0 = positive
-5 1101 .
4 1100 L = negative |
-3 1011 Remaining bits indicate magnitude
-2 1010 0101, = 101, = 5
-1 1001 - L
5 1000 1101, = -101, = -5
0 0000 Pros and cons
; 8823 + easy to understand, easy to negate
ool + symmetric |
4 0100 - two representations of zero
> 0l01 - need different algorithms to add
6 0110 sned and sned b
» 2 0111 signe an. unsigned numbers
Not used for integers today
_ /

(

Ones’ Complement

22

Obsolete Attempt #2:
Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight -(2°1-1)
10105 = (1*=7)+(0*4)+(1*2)+(0*1)
= =3
00105 = (0*=7)+(0*4)+(1*2)+(0*1)
= 2

Computing negative = flipping all bits

Similar pros and cons to sign-magnitude

-

Two’s Complement

23

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition

High-order bit has weight -(2°1)

1010, = (1*=8)+(0*4)+ (1*2)+ (0*1)
= -0

0010, = (0*=8)+ (0*4)+ (1*2)+(0*1)
= 2

-

Two’s Complement (cont.)

24

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative

neg(x)=~x+ 1

neg(x) = onescomp(x) + 1
neg(0101g) = 10105 + 1 = 10114
neg (1011z) = 01005+ 1 = 01014

Pros and cons
- hot symmetric
(“extra” negative number; -(-8) = -8)
+ one representation of zero
+ same algorithms add/subtract
signed and unsigned integers

-

Adding Signed Integers

25

pos + pos
11
3 0011,
+ 3 + 0011,
6 0110,
pos + neg
1111
3 0011,
+ -1 + 1111,
2 0010,
neg + neg
11
-3 1101,
+ -2 + 1110,

-5 1011,

pos + pos (overflow)

111
7 0111,
+ 1 + 0001,

-8 1000,

How would you
detect overflow
programmatically?

neg + neg (overflow)

11

-6 10104

+ -5 + 1011,
5 0101,

-

Subtracting Signed Integers

How would you compute 3 - 47

3 0011,
- 4 - 01004
? 2927,

26

-
Subtracting Signed Integers

Perform subtraction Compute two’s comp
with borrows or and add
11
3 0011, 3 0011,
-4 - 0100, ‘ + -4+ 11004
-1 1111, -1 1111,
11 1
-5 1011, -5 1011,
--2 - 11104 ‘ + 2+ 00104
-3 1101, -3 1101,
27
\ J

-

Negating Signed Ints: Math

28|

Question: Why does two’s comp arithmetic work?

Answer: [-b] mod 24 = [twoscomp(b)] mod 24

[-b] mod 2*4

[24 — D] mod 24

[2- 1 - b + 1] mod 2°
[(2* - 1 - b) + 1] mod 24
[onescomp (b) + 1] mod 24
[twoscomp (b)] mod 24

So: [a - b] mod 24 =[a + twoscomp(b)] mod 24

b] mod 24

[a + 2 — b] mod 24
+ 2* -1 -Db + 1] mod 24

[a + (29 - 1 - b) + 1] mod 2%
+
+

V)]
|

onescomp (b) + 1] mod 24
twoscomp (b)] mod 24

nn mnne
V)

29

(AT LONG LAST)
INTEGERS IN C

no pun intended, | sweatr!

(@hannahbuging

J

https://unsplash.com/@hannahbusing

(

Integer Data Types in C

31

Integer types of various sizes: {signed, unsigned}{char, short, int, long}

 Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
e charis 1 byte

 Number of bits per byte is unspecified (but in the 215t century, safe to assume it's 8)

e Signedness is system dependent, so for arithmetic use “signed char” or “unsigned char”
e Sizes of other integer types not fully specified but constrained:

e 1nt was intended to be “natural word size” of hardware, but isn’'t always

e 2< sizeof(short) < sizeof(int) < sizeof(long)

On armlab:
* Natural word size: 8 bytes (“64-bit machine”) What decisions did the
e char: 1 byte designers of Java make?
e short: 2 bytes
e Int: 4 bytes (compatibility with widespread 32-bit code)
e long: 8 bytes

Integer Types in Java vs. C AN

I N T

unsigned char
unsigned short

Unsigned types char // 16 bits unsigned (int)
unsigned long
byte // 8 bits signed char
_ short // 16 bits (signed) short
=gt yipes int // 32 bits (signed) int
long // 64 bits (signed) long

1.Not guaranteed by C, but on armlab, short = 16 bits, int = 32 bits, 1long = 64 bits
2.Not guaranteed by C, but on armlab, char is unsigned

-

sizeof Operator

33|

* Applied at compile-time
 Operand can be a data type

 Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217
e sizeof(int) evaluatesto 4
e sizeof (i) evaluatesto 4 if i is a variable of type int
e sizeof(1+2) evaluatesto 4

-
Integer Literals in C

e Decimal int: 123

e Prefixes to indicate a different base e Suffixes to indicate a different type
e Octalint: 0173 =123 e Use "L" suffix to indicate long literal
e Hexadecimal int: Ox7B =123 e Use "U" suffix to indicate unsigned literal
* No prefix to indicate binary int literal e No suffix to indicate char or short literals;

Instead, cast

char: [(< reallyint, as seen lasttime) - (char) 123, (char) 0173, (char) Ox7B
int: 123, 0173, Ox7B

long: 123L, 0173L, Ox7BL

short: (short)123, (short)0173, (short)Ox7B

unsigned int: 123U, 0173U, Ox7BU

unsigned long: 123UL, 0173UL, Ox7BUL
unsigned short: (unsigned short)123, (unsigned short)0173, (unsigned short)Ox7B

- J

-
|> sizeof synthesis

Q: What is the value of the following sizeof expression on the armlab machines?

int i 1;

sizeof (i + 2L)

12

35| error

OPERATIONS
ON NUMBERS

Shawn Roggi @@

https://unsplash.com/@photoshobby
https://www.flickr.com/photos/shawnzlea/

-
Reading / Writing Numbers

Motivation
* Must convert between external form (sequence of character codes) and internal form
e Could provide getchar(), putshort(), getint(), putfloat(), etc.
e Alternative implemented in C: parameterized functions

scanf() and printf()
e Can read/write any primitive type of data
e First parameter is a format string containing conversion specs: size, base, field width
e Can read/write multiple variables with one call

See King book for details

37

-

Operators in C

38|

e Typical arithmetic operators: + - * / %

e Typical relational operators: == = < <= > >=
e Each evaluates to FALSE = 0, TRUE= 1

e Typical logical operators: ! && ||
e Each interprets O = FALSE, non-O = TRUE
e Each evaluatesto FALSE = 0, TRUE= 1

e Cast operator: (type)

e Bitwise operators: ~ & | N >> <<

(

Shifting Unsigned Integers

39

Bitwise right shift (>> in C): fill on left with zeros

10 >> 1 = 5
10103 0101;

What is the effect
arithmetically?

10 >> 2 = 2
10103 0010z

Bitwise left shift (<< in C): fill on right with zeros

5<< 1= 10
0101; 10103

What is the effect
arithmetically?

3K 2 > 12
0011; 11003

3 <K 3 > 8
0011; 10003 € Results are mod 24

-

Other Bitwise Operations on Unsigned Integers

40

Bitwise NOT (~ in C)
* Flip each bit (don't forget leading Os!)

~10 = 5 ~5 = 10
1010z 0101 0101; 1010

Bitwise AND (& in C)
 AND (1=True, O=False) corresponding bits

10 10103 10 10103
& 7 & 0111; & 2 & 0010z
2 0010z 2 0010z

Useful for “masking” bits to O

| X&0isO,x& 1isx

-

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

* Logical OR corresponding bits

10 10105 Useful for “masking” bits to 1
| 1 | 0001,

x| 1lisd, x| Oisx

11 1011,

Bitwise exclusive OR (" in C)
* Logical exclusive OR corresponding bits

10 10104
~ 10 A 10104 Xx M xsets all bitsto O
0 0000,

41

/

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

«2 (TRUE) && 1 (TRUE)

=> 1 (TRUE)

2

Decimal Binary

00000000 00000000 00000000

& 1 00000000 00000000 0OOOOOOO

1 00000000 00000OOOO 0OOOOOOOO

00000010
00000001

00000001

«2 (TRUE) & 1 (TRUE)

=> 0 (FALSE)

Decimal

2

&1

0

Binary
00000000 00000000 00000000
00000000 00000000 00000000

00000000 00000000 00000000

00000010
00000001

00000000

Implication:

e Use logical AND to control flow of logic
e Use bitwise AND only when doing bit-level manipulation

e Same for OR and NOT

42

-
|> A Bit Complicated ... challenge for the bored

How do you set bit k (where the least significant bit is bit O)
of unsigned variable u to zero (leaving everything else in u unchanged)?

u &= (0 << Kk);
u|=(1<<k)
u|=~(1<<k)
u &= ~(1<<Kk);

m o o o »

u=~u”(1<<Kk),

43

-

Aside: Using Bitwise Ops for Arithmetic

44

X*2Y==x<<y
e 3*4 =3%22=3<<2> 12

X/ 2==Xx>>y
e 13/4 =13/2%2=13>>2=3

X% 2y ==X & (2¥-1)
o 13%4 = 13%22 = 13&(22-1)
=13&3 =1

13 1101,
& 3 & 0011,

1 0001

Can use <<, >>, and & to do some arithmetic efficiently

Fast way to multiply
by a power of 2

Fast way to divide
unsigned by power of 2

Fast way to mod
by a power of 2

Many compilers will
do these transformations
automatically!

(

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

3<<1=>=2586
0011, 0110g

What is the effect
arithmetically?

-3 << 1= -6
1101, 10103

-3 <K 2 = 4
1101, 01004

Results are mod 24

Bitwise right shift: fill on left with ?77?

45|

(

Shifting Signed Integers (cont.)

Bitwise arithmetic right shift: fill on left with sign bit

6 > 1 = 3
0110, 0011,

What is the effect
arithmetically?

-6 > 1 = -3
1010, 1101,

Bitwise logical right shift: fill on left with zeros

6 > 1 => 3
0110, 0011,

What is the effect
arithmetically???

-6 >> 1 => 5
1010, 0101,

In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)
46| e Not specified by standard (happens to be arithmetic on armlab)
_ * Best to avoid shifting signed integers W,

[

Other Operations on Signed Ints

a7

Bitwise NOT (~ in C)

e Same as with unsigned ints

Bitwise AND (& in C)

e Same as with unsigned ints

Bitwise OR: (| in C)

e Same as with unsigned ints

Bitwise exclusive OR (" in C)
e Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

-
Assignment Operator

Many high-level languages provide an assignment statement

C provides an assignment operator

* Performs assignment, and then evaluates to the assigned value
* Allows assignment to appear within larger expressions
e But be careful about precedence! Extra parentheses often needed!

48

Assignment Operator Examples

Examples

i=20;
/*
J =1
/*

while

/*

Side effect: assign 0 to 1i.
Evaluate to 0. */

= 0; /* Assignment op has R to L associativity */
Side effect: assign 0 to 1i.

Evaluate to 0.

Side effect: assign 0 to j.

Evaluate to 0. */

((1 = getchar()) '= EOF)

Read a character or EOF value.

Side effect: assign that wvalue to 1i.
Evaluate to that wvalue.

Compare that wvalue to EOF.

Evaluate to 0 (FALSE) or 1 (TRUE). */

49

-
Special-Purpose Assignment in C

Motivation
e The constructa = b + c is flexible
 The constructd = d + e is somewhat common
e The constructd =d + 1 is very common

Assignment in C
* Introduce += operator to do things like d +=¢€
e Extendto -= *= /= ~= &= |= "= <<= >>=
* All evaluate to whatever was assigned
* Pre-increment and pre-decrement: ++d --d
e Post-increment and post-decrement (evaluate to old value): d++ d--

50,

(
o\ '
I/ Confusion Plusplus

Q: What are i and j set to in the following code?

i 5;
Jj i++;
J 4= ++i;

A.5, 7
B.7,5
C.7,11
D.7,12
510 E. 7, 13

-
|> Incremental Iffiness

52

Q: What does the following code print?

m o O W »

22
33

int 1 = 1;
switch (i++) {
case 1: printf("3%d", ++1i);
case 2: printf("sd", i++);
}

-
Sample Exam Question (Spring 2017, Exam 1)

1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following
questions.

(i) (4 points) What is the largest unsigned number that can be represented in 7 bits?
In binary: In decimal:

(i) (4 points) What is the smallest (i.e., most negative) signed number represented in
2’'s complement in 7 bits?

In binary: In decimal:

(iii) (2 points) Is there a number n, other than O, for which n is equal to —-n, when
represented in 2’s complement in 7 bits? If yes, show the number (in decimal). If no,
briefly explain why not.

(iv) (2 points) When doing arithmetic addition using 2’s complement representation
53] in 7 bits, is it possible to have an overflow when the first number is positive and the
_| second is negative? (Yes/No answer is sufficient, no need to explain.) J

-

(Hard!) Sample Exam Question (Fall 2020, Exam 1)

M ver [xov 8
TES | TAM
AR

54

a. Inthe two ranges below, replace the " " with the inclusive upper and lower bounds of decimal numbers
that do not change value when moving from i-bit two's complement to (i+1)-bit two's complement (for
example, when moving from four bits to represent integers to using five bits to do so). The two ranges
consider two different possibilities for changing an i-bit value into an (i+1)-bit value:

If we make the change by prepending a O onto the front of the i-bit representation (e.g., 1001 -> 01001):

<= X <=
If we make the change by prepending a 1 onto the front of the i-bit representation (e.g., 1001 -> 11001):

b. In the range below, replace the " " with the inclusive upper and lower bounds of armlab C int literals for
which the expression still compiles and does not change value when adding a O before the first character of the

literal (for example, 217 -> 0217):

<= X <=

Hint 1: does a literal 09 compile?
Hint 2: the word "expression” is intentional; note that the first character of a signed int is not necessarily a digit. /

55

APPENDIX:
FLOATING POINT

https://unsplash.com/@tylerleeeaston

-

Rational Numbers

56

Mathematics

* A rational number is one that can be expressed
as the ratio of two integers

* Unbounded range and precision

Computer science

* Finite range and precision
e Approximate using floating point number

-

Floating Point Numbers

o7

Like scientific notation: e.g., c is
2.99792458 x 108 m/s

This has the form
(multiplier) X (baSe)(power)

In the computer,
* Multiplier is called mantissa
e Base is almost always 2
e Power is called exponent

[

Floating-Point Data Types

58

C specifies:
* Three floating-point data types:
float, double, and long double
e Sizes unspecified, but constrained:
e sizeof(float) < sizeof(double) < sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)
e float: 4 bytes
e double: 8 bytes

On ArmLab (but varying across architectures)
e long double: 16 bytes

-

Floating-Point Literals

59

How to write a floating-point number?
e Either fixed-point or “scientific” notation
e Any literal that contains decimal point or "E" is floating-point
e The default floating-point type is double
e Append "F" to indicate float
* Append "L" to indicate long double

Examples
* double: 123.456, 1E-2, -1.23456E4
* float: 123.456F, 1E-2F, -1.23456E4F
* long double: 123.456L, 1E-2L, -1.23456E4L

[

IEEE Floating Point Representation

60,

Common finite representation: IEEE floating point
* More precisely: ISO/IEEE 754 standard

Using 32 bits (type £1loat in C):
e 1 bit: sign (O=positive, 1=negative)
e 8 bits: exponent + 127
e 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type double in C):
e 1 bit: sign (O=positive, 1=negative)
e 11 bits: exponent + 1023

e 52 bits: binary fraction of the form
1.bb

-

When was floating-point invented?

61

from Latin mantisa

COMMON LOGARITHMS

logiox

mantissa (noun): decimal part of a logarithm, 1865, €Answer: long before computers!
“a worthless addition, makeweight”

’ I 2
L el Wy -y Sog 4. " £T56 7 18 Ky o 2
A -+
50 | -6990 | 6998 7007 7016 | 7024 7033 7042 | 7050 7059 7067 | 9 11 2 3
81 | +7076 | 7084 7093 7101 | 7110 7118 7126 | 7135 7143 7152} 8 | 1 2 2
83 | <7160 | 7168 7177 7185 | 7193 7202 7210 | 7218 7226 7235 § 8 |1 2 2
53 | *7243 | 7251 7259 7267 | 7275 7284 7292 | 7300 7308 7316 | 8 | 1 2 2
54 | 7324 | 7332 7340 7348 | 7356 7364 7372 | 7380 7388 7396 | 8 |1 2 2
55 | *7404 | 7412 7419 7427 | 7435 7443 7451 | 7459 7466 7474 | 8 | X 2 2

-

Floating Point Example

62

Sign (1 bit):

Exponent (8 bits):
e« 100000115 =131
¢ 131 -127=4

Mantissa (23 bits):
* 1.101101100000000000000004

1000001110110110000000000000000

32-bit representation

o 1+ (1*21)+(0*22)+(1*23)+(1*24)+(0*2°)+
(1*28)+(1*27) +(0*2~)=1.7109375

Number:
e -1.7109375 * 24 =-27.375

[

Floating Point Consequences

63|

“Machine epsilon”; smallest positive number you can
add to 1.0 and get something other than 1.0

For float: ¢ = 107

 No such number as 1.000000001
e Rule of thumb: “almost 7 digits of precision”

For double: ¢ =2 x 1016

e Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers

/

Floating Point Consequences, cont

64

Just as decimal number system can Decimal Rational
. Approx Value
represent only some rational 3 3/10
.33 33/100
numbers with finite digit count... ‘333 YT
e Example: 1/3 cannot be represented
Binary number system can _ _
] Binary Rational
represent only some rational Approx Value
. 0.0 0/2
numbers with finite digit count . 1f4
e Example: 1/5 cannot be represented U ehle 2/8
0.0011 3/16
0.00110 6/32
Beware of round-off error 0.001101 13/64
o . . 0.0011010 26/128
Error resultl_ng from inexact 0.00110011 51/256
representatlon ..

e Can accumulate
e Be careful when comparing two floating-point numbers for equality

-
Q\ '
I/ Floating away ...

What does the following code print? |double sum = 0.0;
double i;
for (1 = 0.0; 1 '= 10.0; i++)
sum += 0.1;
if (sum == 1.0)
printf ("All good!\n") ;
else
printf ("Yikes!\n") ;

All good! B: Yikes!

Yikes! ... loop terminates, because we
can represent 10.0 exactly by

(Infinite loop) adding 1.0 at a time.

o 0 w »

(Compilation error) .. but sum isn’t 1.0 because we

65| can’t represent 1.0 exactly by
g adding 0.1 at a time. Y,

