Wireless Networks II: Mesh Network Routing

COS 461: Computer Networks Lecture 18

Kyle Jamieson

[Parts adapted from I. F. Akyildiz, B. Karp]

Wireless Mesh Networks: Motivation

- Most wireless network traffic goes through APs
- Mesh networks remove this restriction
 - Multiple paths between most pairs: Mesh topology
- Big Impact: Home Mesh, Satellite/Balloon Internet

Today

- 1. Review Distance Vector Routing
 - New node join
 - Route changes
 - Broken link
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
- 3. Dynamic Source Routing (DSR)

Distance Vector Routing: Review

- Every node maintains a *routing table*
 - For each *destination* node in the mesh:
 - The number of hops to reach the destination (metric)
 - The next node on the path towards the destination
- All nodes periodically, locally broadcast routing table, learn about every destination in network

D joins the network

- D joins the network
- D's broadcast first updates C's table with new entry for D

- Now C broadcasts its routing table
 - B and D hear and add new entries, incrementing metric

- Now B broadcasts its routing table
 A and C been and add new entries if show
 - A and C hear and add new entries, if shorter route

Today

- 1. Review Distance Vector Routing
 - New node join
 - Route changes
 - Broken link
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
- 3. Dynamic Source Routing (DSR)

• D moves to another place and broadcast its routing table

10

• D moves to another place and broadcast its routing table

- D moves to another place and broadcast its routing table
- B broadcasts its routing table

Today

- 1. Review Distance Vector Routing
 - New node join
 - Route changes
 - Broken link
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
- 3. Dynamic Source Routing (DSR)

Distance Vector - Broken Link

• Suppose link $C \leftarrow \rightarrow D$ breaks

Distance Vector - Broken Link

- 1. C hears no advertisement from D for a timeout period
 - C sets D's metric to ∞

Distance Vector - Broken Link

- 1. C sets D's metric to ∞
- 2. B broadcasts its routing table
 - C now accepts B's entry for D (3 < ∞)

Broken Link: Counting to Infinity

- 1. C sets D's metric to ∞
- 2. B broadcasts its routing table
- 3. C broadcasts its routing table
 - **B** accepts C's new metric (B's previous next-hop was C)

Broken Link: Counting to Infinity

- 1. C sets D's metric to ∞
- 2. B broadcasts its routing table
- 3. C broadcasts its routing table
- 4. B broadcasts its routing table
 - A, C accept B's new metric (previous next-hops: B)

Today

- 1. Review Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
 - New node join
 - Broken link
 - Route change
- 3. Dynamic Source Routing (DSR)

Destination Sequenced Distance-Vector (DSDV) Routing

- Guarantees loop freeness
- New routing table information: Sequence number
 - Sequence number is per-destination
 - Originated by destination
 - Included and propagated in routing advertisements

Destination	Next	Metric	Seq. Nr
Α	Α	0	550
В	В	1	102
C	В	3	588
D	В	4	312

DSDV: Route Advertisement Rule

Rules to set sequence number:

- Just before node N's broadcast advertisement:
 Node N sets:
 - Seq(N) \leftarrow Seq(N) + 2
- Node N thinks neighbor P is no longer directly reachable
 - Node N sets:
 - Seq(P) \leftarrow Seq(P) + 1
 - Metric(P) $\leftarrow \infty$

- D joins the network
- D's broadcast first updates C's table w/ new entry for D

Today

- 1. Review Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
 - New node join
 - Broken link
 - Route change
- 3. Dynamic Source Routing (DSR)

DSDV – Broken Link

• Suppose link $C \leftarrow \rightarrow D$ breaks

DSDV – Broken Link

DSDV: Routing Table Update Rule

<u>Rules to update routing table entry:</u>

• Node N gets routing advertisement from neighbor Node P:

- Update routing table entry for node E when:
 - Seq(E) in P's advertisement > Seq(E) in N's table

DSDV - Broken Link

• B next broadcasts its routing table

Today

- 1. Review Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
 - New node join
 - Broken link
 - Route change
- 3. Dynamic Source Routing (DSR)

D moves to another place and broadcasts its routing table

- D moves to another place and broadcasts its routing table
- B broadcasts its routing table

33

Today

- 1. Review Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
- 3. Dynamic Source Routing (DSR)

Dynamic Source Routing (DSR)

- No periodic "beaconing" from all nodes
- When node S wants to send a packet to node D (but doesn't know a route to D), S initiates a route discovery
- S network-floods a *Route Request (RREQ)*
 - Each node appends its own id when forwarding RREQ

Represents a node that has received RREQ for D from S

------> Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

Represents transmission of RREQ

• Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Represents transmission of RREQ

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

Represents transmission of RREQ

Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply in DSR

- On receiving first RREQ, D sends a Route Reply (RREP)
 - RREP sent on route obtained by reversing the route in the received RREQ
 - RREP includes the route from S to D over which D received the RREQ

Dynamic Source Routing (DSR)

- On receiving RREP, S caches route included therein
- When S sends a data packet to D, includes entire route in packet header
- Intermediate nodes use the source route included in packet to determine to whom packet should be forwarded

Summary

DV reacts poorly to link failures, which are frequent in wireless

• DSDV is a proactive routing protocol, DSR reactive

- Enable wireless mesh routing, w/appl. in recent/future
 - Home mesh products
 - Satellite internet service providers
 - Balloon/UAV internet service providers