
Lecture 10:
Link State Routing

Kyle Jamieson
COS 461: Computer Networks

Slides adapted from B. Karp



2

Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up 

Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
• Properties of Link State Routing



3

Link State Approach to Routing

• Shortest paths in graph: classic theory 
problem

• Classic centralized single-source 
shortest paths algorithm: Dijkstra’s 
Algorithm
– requires map of entire network

• Link State (LS) Routing:
– push network map to every router
– each router learns link state 

database
– each router runs Dijkstra’s locally



4

Finding Links: Hello Protocol

• Each router configured to know its 
interfaces

• On each interface, every period P, 
transmit a hello packet containing:
– sender’s ID
– list of neighbors from which sender has 

heard hello during period D
– D > P (e.g., D = 3P)

• Link becomes up if have received hello 
containing own ID on it in last period D

• Link becomes down if no such hello 
received in last period D



5

Building a Map: Flooding Protocol (I)
• Whenever link becomes up or becomes down, 

router floods announcement to whole network:
– two link endpoint addresses
– metric for link (configured by administrator)
– sequence number

• Sequence number stored in link state database;
incremented on every changed announcement
– prevents old link states from overwriting new 

ones



6

Building a Map: Flooding Protocol (II)
• Upon receiving new link state msg on interface i:

– if link not in database (db), add it, flood elsewhere
– if link in db & seqno in msg > one in db, write 

into database, flood elsewhere
– if link in db & seqno in msg <= one in db, send 

link state from database on interface i



7

Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up 

Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
• Properties of Link State Routing



8

Healing Network Partitions

• Recall example from Distance Vector routing 
where network partitions

• Consider flooding behavior when partitions heal

A B
C

D E

1

1

0
1

0
1
2

2

0
1

1
1

1

1
1

0

0



9

Healing Network Partitions (II)

• D detects link (D, E), floods link state to A
• A and D may still think link (C, E) exists!
• If first time link (D, E) comes up, how will A learn 

about links (B, E), (B, C)?
– Flooding to report changes only in neighboring 

links not always sufficient!

A B
C

D E

1

1

0
1

0
1
2

2

0
1

1
1

1
1

0

0



10

Healing Network Partitions (III)

• Bringing up adjacencies:
– when link comes up, routers at ends exchange 

short summaries (link endpoints, sequence 
numbers) of their whole databases

– routers then request missing or newer entries 
from one another

– saves bandwidth; real LS database entries 
contain more than link endpoints, seqnos

A B
C

D E

1

1

0
1

0
1
2

2

0
1

1
1

1
1

0

0



11

Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up 

Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
• Properties of Link State Routing



12

Link State Database à Routing Table

• After flooding each router holds map of 
entire network graph in memory
– Need to transform network map into 

routing table

• How: single-source shortest paths algorithm
• Router views itself as source s, all other 

routers as destinations



13

Shortest Paths: Definitions

• Each router is a vertex, v Î V
• Each link is an edge, e Î E, also written (u, v)

– edge weights are non-negative
• Each link metric an edge weight, w(u, v)
• Series of edges is a path, whose cost is sum 

of edges’ weights



14

Shortest Paths: Data Structures
• Single-source shortest paths: seek path with 

least cost from s to all other vertices

• Data structures:
– p[v] is predecessor of v: p[v] is vertex before

v along shortest path from s to v
– d[v] is shortest path estimate: least cost 

found from s to v so far



15

Shortest Paths: Initialization

• When we start, we know little:
– no estimate of cost of any path from s to 

any other vertex
– no predecessor of v along shortest path 

from s to any v

initialize-single-source(V, s)
for each vertex v Î V do

d[v] ß infinity
p[v] ß NULL

d[s] = 0



16

Shortest Paths Building Block: Relaxation

• Relaxation:
– Suppose we have current estimates d[u], 

d[v] of shortest path cost from s to u and v
– Does it reduce cost of shortest path from 

s to v to reach v via (u, v)?

relax(u, v, w)
if d[v] > d[u] + w(u, v) then

d[v] ß d[u] + w(u, v)
p[v] ß u



17

• Suppose
– d[u] = 5
– d[v] = 9
– w(u, v) = 2

• relax(u, v, w) computes:
– d[v] ?> d[u] + w(u, v)
– 9 ?> 5 + 2

• Yes, so reaching v via (u, v) 
reduces path cost

– d[v] = d[u] + w(u, v)
– p[v] = u

Relaxation: Example

5 9

u v

relax(u, v)

5 7

u v

2

2



18

Dijkstra’s Algorithm: Overall Strategy

• Maintain running estimates of costs of 
shortest paths to all vertices (initially all 
infinity)

• Keep a set S of vertices that are “finished”; 
shortest paths to these vertices already 
found (initially empty)

• Repeatedly pick the unfinished vertex v with 
least shortest path cost estimate

• Add v to set S
• Relax all edges leaving v



19

Dijkstra’s Algorithm: Pseudocode

Dijkstra(V, E, w, s)
initialize-single-source(V, s)
S ß Æ
Q ß V
while Q ¹ Æ do

u ß extract-min(Q)
S ß S È {u}
for each vertex v that neighbors u do

relax(u, v, w)

extract-min(Q): return 
vertex v in Q with minimal 
shortest-path estimate d[v]



20

Dijkstra’s Algorithm: Example

• s: source
• d[i]: number inside of vertex i
• p[b]: if (a, b) red, then p[b] = a
• members of set S: blue-shaded 

vertices
• members of priority queue Q: non-

shaded vertices

0

¥¥

¥¥

s

u v

yx

10
1

2 3

5 2
7

64
9

0

¥10

¥5

u v

yx

10
1

2 3

5 2
7

64
9

s



21

Dijkstra’s Algorithm Example (cont’d)

0

¥10

¥5

u v

yx

10
1

2 3

5 2
7

64
9

0

148

75

u v

yx

10
1

2 3

5 2
7

4
9

6ss



22

Dijkstra’s Algorithm Example (cont’d)

0

138

75

v

yx

10
1

2 3

5 2
7

4
9

6

u

0

98

75

v

yx

10
1

2 3

5 2
7

4
9

6

u

s



23

Dijkstra’s Algorithm Example (cont’d)

• At termination, know shortest-path routes 
from s to all other routers

• Shortest-path tree, rooted at s

0

98

75

v

yx

10
1

2 3

5 2
7

4
9

6

u

0

98

75

v

yx

10
1

2 3

5 2
7

4
9

6

u

ss



24

Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up 

Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-

First Algorithm
• Properties of Link State Routing



25

Link State Routing: Drawbacks

• LS more complex to implement than DV
– Sequence numbers crucial to protect against 

stale announcements
– Bringing up adjacencies
– Maintains both link state database and routing 

table



26

Link State Routing: 
Advantages + Summary

• At first glance, flooding status of all links seems 
costly
– It is! Doesn’t scale to thousands of 

nodes without other tricks, namely 
hierarchy (more when we discuss BGP)

– Cost reasonable for networks of 
100s/routers

• In practice, for intra-domain routing, LS 
has won, and DV no longer used
– LS: after flooding, no loops in routes, 

provided all nodes have consistent link 
state databases

– LS: flooding offers fast convergence 
after topology changes


