Lecture 5:
The Transport Layer

Kyle Jamieson
COS 461: Computer Networks

Transport Layer: Context & Motivation

Application Applications
Transport EEIECRS(EEE Messages

\Sh s @ Best-effort global packet delivery

PV @ DBest-effort /ocal packet delivery

* Most applications want to exchange messages between
different remote processes

* Further, many applications want a reliable stream of bytes
between different remote processes

Transport Protocols

* Provide logical communication between remote
application processes
— Sender application divides a message into segments

— Receiver application reassembles segments into
message

* Transport layer services
— (De)multiplexing packets
— Detecting corrupted data

— Optional: reliable byte stream delivery, flow control,
congestion avoidance...

User Datagram Protocol (UDP)

* Lightweight communication
between processes
— Send and receive messages

— Avoid overhead of ordered,
reliable delivery

* No connection setup delay, no
in-kernel connection state

* Used by popular apps
— Query/response for DNS
— Real-time data in VolP

8 byte header

SRC port

DST port

checksum

length

DATA

Advantages of UDP

Fine-grain control
— UDP sends as soon as the application writes

No connection set-up delay

— UDP sends without establishing a connection

No connection state in host OS
— No buffers, parameters, sequence #s, etc.

Small header overhead
— UDP header is only eight-bytes long

ldentifying Sender and Receiver Apps

* Host may run multiple, concurrent applications

* Typical layered multiplexing: transport protocol
multiplexed (shared) by applications above

* Transport protocol must identify sending and
receiving application instance

* Application instance identifier: port
— Port owned by one application instance on host

Demultiplexing with Ports

Server host 128.2.194.242

. Service request for ..
O, 128.2.194.242:80

Web server
: . (i.e., the Web server) (port 80)
Echo server
S : (port 7)

Transmission Control Protocol (TCP)

* Reliable byte stream service

— all data reach receiver: in
order they were sent, with no
data corrupted

* Reliable, in-order delivery
— Corruption: checksums

— Detect loss/reordering:
sequence numbers

— Reliable delivery:
acknowledgments and
retransmissions

e Connection oriented

— Explicit set-up and tear-
down of TCP connection

* Flow control

— Prevent overflow of the
receiver’s buffer space

* Congestion control

— Adapt to network
congestion for the
greater good

Outline

Today:
* Fundamentals, Data transmission
* Connection establishment

Lecture 6:

* Retransmit timeouts

* RTT estimator

* Slow Start and Self-clocking
* AIMD Congestion control

Problem:

Reliable (i.e., Exactly Once)

Delivery, over an
Unreliable Network

An Analogy

* Alice is saying something to Bob
— What if Bob couldn’t understand Alice?
* Bob asks Alice to repeat what she said

* What if Bob hasn't heard Alice for a while?
— Is Alice just being quiet? Or, has he lost reception?

* How does Alice know her words are understood?
— How long should she just keep on talking?
— Maybe Bob should periodically say “uh huh”
* ... or Bob should ask "Can you hear me now?”

11

Take-Aways from the Example

* Acknowledgments from receiver

— Positive: "okay” or “uh huh” or "ACK"
— Negative: "please repeat that” or "NACK”

* Retransmission by the sender
— After not receiving an "ACK"
— After receiving a "NACK
— You can use both (as TCP does implicitly)

* Timeout by the sender ("stop and wait")
— Don’t wait forever without some acknowledgment

12

Challenges of Reliable Data Transfer

* Over a network that may cause bit errors
— Receiver detects errors and requests retransmission

* Over alossy network with bit errors

— Some packets missing, others corrupted
— Receiver cannot easily detect loss

* Over a network that may reorder packets

— How can the receiver distinguish loss from out of
order delivery?

13

Automatic Repeat Request (ARQ):
Ensuring At-Least-Once Delivery

Sender attaches a unique number (nonce) to
each data packet sent; keeps copy of sent packet

Receiver returns acknowledgement (ACK) for
each data packet received, containing nonce

Sender sets a timer on each transmission

— timer expires before ACK returns = retransmit
the packet

— ACK returns before timer expires = cancel
timer, discard saved packet copy

14

Fundamental Problem: Estimating RTT

* Round-Trip Time (RTT): the end-to-end delay for
data to reach receiver and ACK to reach sender,
comprised of:

— propagation delay on links
— serialization delay at each hop
— queuing delay at routers

* Design alternative: use fixed timer (e.g., 250 ms)
— What if the route changes?
— What if congestion at one or more routers?

15

Estimating RTT: Exponentially Weighted
Moving Average (EWMA)

* Measurements of RTT readily available
— note time t when packet sent
— corresponding ACK returns at time t
— RTT measurement =m =t'-t

* Use just asingle sample?
Too brittle (queuing, routing dynamics)

* Instead: adapt over time, using EWMA:
— measurements: m,, m, m,, ...
— fractional weight for new measurement, a
— RTT,=((2-0) x RTT,; + . x m,)

16

Retransmission and Duplicate Delivery

* When sender’s retransmit timer expires, two
indistinguishable cases (why?):

— data packet dropped en route to receiver, or
— ACK dropped en route to sender

* |n both cases, sender retransmits

* Inlatter case, duplicate data packet reaches receiver!

— How to prevent receiver from passing duplicates to
application?

17

Eliminating Duplicates:
Exactly Once Delivery

Each packet sent with unique identifier (nonce)

Design alternative: receiver stores a set of nonces that it has
previously seen (“tombstones”)

— if received packet seen before, drop, but resend ACK to sender
How many tombstones must receiver store?

Better plan: sequence numbers

— Sender marks each packet with monotonically increasing
integer sequence number (non-random nonce)

— sender includes greatest ACKed sequence number in its packets

— receiver remembers only greatest received sequence number,
drops received packets with smaller ones

18

End-to-End Integrity

Achieved by using transport checksum

Protects against things link-layer reliability cannot:
— router memory corruption, software bugs, &c.
Covers data in packet, transport protocol header

Also should cover layer-3 source and destination!

— misdelivered packet should not be inserted into data
stream at receiver, nor should be acknowledged

— receiver drops packets w/failed transport checksum

— TCP “pseudo header” covers IP source and
destination (more later)

19

Flow Control:
TCP Sliding Window

Window-Based Flow Control: Motivation

sender
send first segment —

receive ACK,
send second segment

receive ACK,

send third segment >

(repeat N times)

Done. ——

awaits ACK, repeats...

\
AcknoW\edgemem
—

Mh

Segmenr >

Acknow\edgemem Z

3 L]
. N
i

nt N
Ac\mow\edgeme

Result: one packet sent per RTT

receiver
fime

—» accept segment 1

—» dccept segment 2

—» accept segment N

Previous scheme (Stop and Wait): sender sends one packet,

— e.g., 70 ms RTT, 1500-byte packets: Max throughput: 171 Kbps

21

Fixed Window-Based Flow Control

sender may /s receiver
na? time
s receive request,
yes, 4 segmen <— open a 4-segment
receive permission, / window
send segment 1 —= - se
Ment #;

send segment 2 —
send segment 3 — £2 —» buffer segment 1
send segment 4 —= - —» buffer segment 2

receive ACK1 -a— —» buffer segment 3

receive ACK 2 ~a— —» buffer segment 4 Y

receive ACK3 -a—

receive ACK 4, -a—
wait

finished processing
segments 1-4, reopen
the window

T

receive permission,]
send segment 5 =5

send segment 6 —

buffer segment 5
buffer segment 6

vy

Pipeline transmissions to “keep pipe full”; overlap ACKs with data
Sender sends window of packets sequentially, without awaiting ACKs
Sender retains packets until ACKed, tracks which have been ACKed

Sender sets retransmit timer for each window; when expires, resends all
unACKed packets in window

Choosing Window Size:
Bandwidth-Delay Product

Network bottleneck: point of slowest rate
along path between sender and receiver

To keep pipe full:

— window size > RTT X - P
bottleneck rate N__ne S

(=11}
Window too small: ~ **
can't fill pipe TN —/TTJ
Window too large: S e
unnecessary A e
network

load/queuing/loss

23

TCP Support for Reliable Delivery

- Detect bit errors: checksum
— Used to detect corrupted data at the receiver
— ...leading the receiver to drop the packet

- Detect missing data: sequence number
— Used to detect a gap in the stream of bytes
— ... and for putting the data back in order

- Recover from lost data: retransmission

— Sender retransmits lost or corrupted data
— Two main ways to detect lost packets

24

TCP Packet Header

Bit: 0 4 10 16 31

Source Port Destination Port

Sequence Number

20 octets

Acknowledgment Number

Data u[a]r[r]s[F B
Reserved [R|C|s|s|y|I Window
offset GIK|H|TIN|N
Checksum Urgent Pointer
Options + Padding

TCP packet: IP header + TCP header + data
TCP header: 20 bytes long

Checksum covers header + “pseudo header”

— IP header source and destination addresses, protocol
— Length of TCP segment (TCP header + data)

25

TCP Header Detalls

Connections inherently bidirectional; all TCP headers
carry both data and ACK sequence numbers

32-bit sequence numbers are in units of bytes

Source and destination ports

— multiplexing of TCP by applications
— UNIX: local ports below 1024 reserved (only root may use)

Window: advertisement of number of bytes advertiser
willing to accept

26

TCP: Data Transmission ()

Each byte numbered sequentially, mod 232
Sender buffers data in case retransmission required
Receiver buffers data for in-order reassembly

Sequence number (segno) field in TCP header
indicates first user payload byte in packet

27

TCP: Data Transmission (l1)

e Receiver sends cumulative ACKs

— ACK number in TCP header names highest contiguous
byte number received thus far, +1

— one ACK per received packet, OR

— Delayed ACK also possible: receiver batches ACKs, sends
one for every pair of data packets (200 ms max delay)

* Window at sender tracks bytes not yet ACK'd

— Left edge advances as packets acknowledged
— Right edge advances as updates arrive from receiver

* Thisis called a sliding window

28

TCP’s Sliding Window:
High-Level View

Sending application Receiving application
\

TCP buffer in OS Last byte Last byte TCP buffer in OS
written read
’ Sent, not Pending Delivered | Ready for app -\QQO
Sent, ACK'd eAr:CKt\do senld to app to read é’\\"’%
A T V'S V'S

Last byte Next byte
ACKed expected

Last byte

Last byte received

sent

TCP’s Sliding Window:
Window Size

* Sender's transmit window size: avail. buffer space at sender

* Receiverindicates receive window size explicitly to sender in
window field in TCP header

— corresponds to available buffer space at receiver
— Receiver must be able to store this amount of data

* Sender uses window = min of send & receive window sizes

Sender: Window Size Receiver:
1 T vyt ¥
OK to send
Last byte ACKed Next byte expected

Last byte sent Last byte received

Outline

Today:
* Fundamentals, Data transmission
* Connection establishment

Lecture 6:

* Retransmit timeouts

* RTT estimator

* Slow Start and Self-clocking
* AIMD Congestion control

31

Initial Sequence Number (ISN)

* Sequence number for the very first byte
— E.g., Why not a de facto ISN of 0?

* Practical issue: reuse of port numbers

— Port numbers must (eventually) get used again
— ... and an old packet may still be in flight
— ... and associated with the new connection

* So, TCP must change the ISN over time
— Set from a 32-bit clock that ticks every 4 microsec
— ... which wraps around once every 4.55 hours!

32

TCP Connection Establishment: Motivation

e Goals:
— Start TCP connection between two hosts

— Avoid mixing data from old connection in new one

— Avoid confusing previous connection attempts with
current one

— Prevent (most) third parties from impersonating
(spoofing) one endpoint

* SYN packets (SYN flag in TCP header set) used to
establish connections

e Use retransmission timer to recover from lost SYNs

* What protocol meets above goals?

33

TCP Connection Establishment:
Non-Solution (l)

A

Use two-way handshake
AsendsSYNto B

— A retransmits SYN if not
received

— B accepts by returning
SYNto A

A and B can ignore duplicate
SYNs after connection
established

But, what about delayed
data packets from old
connection?

— s

J

data, seqno = 1

W\
o, oedno =512

time

" closed

34

TCP Connection Establishment:
Non-Solution (1)

* Two-way handshake, as
before, but enclose random

Initial sequence numbers
on SYNSs

* But, what about delayed
SYNs from old connection?

— A wrongly believes
connection successfully
established

— B will drop all of A’s
data!

A

W

time

" closed

data
ignored!

35

TCP Connection Establishment:
3-Way Handshake

* SetSYN flag on connection

request A B
| /Seqho§i
* Each side chooses a random _3 time
initial sequence number 5ed7 1
ISN
() Seqno .
ACk <. '*1
\J.I..l /’
e Eachside explicitly ACKs

the sequence number of
the SYN it’s responding to

36

Robustness of 3-Way Handshake:
Delayed SYN

* A's SYN(1) delayed: arrives
after A closes connection
— B responds: SYN(j)/ACK(i+1)

* Adoesn't recognize i+1;
responds with reset, RST
flag set in TCP header

* Arejects the connection, no
dropped data later on

time

 closed

37

Robustness of 3-Way Handshake:
Delayed SYN/ACK

A B

* A attempts connectionto B “closed

— Suppose B’s SYN(k)/ACK(p)
delayed, arrives at A during
new connection attempt

* Arejects SYN(k); sends RST

* ConnectionfromAtoB
succeeds unimpeded

time

38

* Suppose host B trusts host A,

* Adversary M may not control A,
but may seek to Impersonate A

— M may not need to receive
data from B; only send data

Robustness of 3-Way Handshake:
Stopping Source Spoofing

based on A's IP

— e.g., B allows any account

creation request from A

(e.g., “create an account
I33thaxor”)

Can M establish a connectic
BasA?

SYN, seqno = j,
A < ACK = i1+1 B

Unless they are on path
between A and B,
adversary cannot spoof
A to B or vice-versa!

Why: random ISNs on
SYNs

39

Outline

Today:
* Fundamentals, Data transmission
e Connection establishment

Coming up, in Lecture 6:

* Retransmit timeouts

* RTT estimator

* Slow Start and Self-clocking
* AIMD Congestion control

40

