
Lecture 5:
The Transport Layer

Kyle Jamieson
COS 461: Computer Networks

Transport Layer: Context & Motivation

• Most applications want to exchange messages between
different remote processes

• Further, many applications want a reliable stream of bytes
between different remote processes

2

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages

Link

Network

Transport

Application

Transport Protocols

• Provide logical communication between remote
application processes
– Sender application divides a message into segments
– Receiver application reassembles segments into

message

• Transport layer services
– (De)multiplexing packets
– Detecting corrupted data
– Optional: reliable byte stream delivery, flow control,

congestion avoidance…

3

User Datagram Protocol (UDP)
• Lightweight communication

between processes
– Send and receive messages
– Avoid overhead of ordered,

reliable delivery
• No connection setup delay, no

in-kernel connection state

• Used by popular apps
– Query/response for DNS
– Real-time data in VoIP

SRC port DST port

checksum length

DATA

4

8 byte header

Advantages of UDP
• Fine-grain control
– UDP sends as soon as the application writes

• No connection set-up delay
– UDP sends without establishing a connection

• No connection state in host OS
– No buffers, parameters, sequence #s, etc.

• Small header overhead
– UDP header is only eight-bytes long

5

6

Identifying Sender and Receiver Apps

• Host may run multiple, concurrent applications

• Typical layered multiplexing: transport protocol
multiplexed (shared) by applications above

• Transport protocol must identify sending and
receiving application instance

• Application instance identifier: port
– Port owned by one application instance on host

Demultiplexing with Ports

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)
OSClient

7

Transmission Control Protocol (TCP)

• Reliable byte stream service
– all data reach receiver: in

order they were sent, with no
data corrupted

• Reliable, in-order delivery
– Corruption: checksums
– Detect loss/reordering:

sequence numbers
– Reliable delivery:

acknowledgments and
retransmissions

• Connection oriented
– Explicit set-up and tear-

down of TCP connection

• Flow control
– Prevent overflow of the

receiver’s buffer space

• Congestion control
– Adapt to network

congestion for the
greater good

8

9

Outline

Today:
• Fundamentals, Data transmission
• Connection establishment

Lecture 6:
• Retransmit timeouts
• RTT estimator
• Slow Start and Self-clocking
• AIMD Congestion control

Problem:

Reliable (i.e., Exactly Once)
Delivery, over an

Unreliable Network

10

An Analogy
• Alice is saying something to Bob
– What if Bob couldn’t understand Alice?
• Bob asks Alice to repeat what she said

• What if Bob hasn’t heard Alice for a while?
– Is Alice just being quiet? Or, has he lost reception?

• How does Alice know her words are understood?
– How long should she just keep on talking?
– Maybe Bob should periodically say “uh huh”
• … or Bob should ask “Can you hear me now?”

11

Take-Aways from the Example
• Acknowledgments from receiver
– Positive: “okay” or “uh huh” or “ACK”
– Negative: “please repeat that” or “NACK”

• Retransmission by the sender
– After not receiving an “ACK”
– After receiving a “NACK
– You can use both (as TCP does implicitly)

• Timeout by the sender (“stop and wait”)
– Don’t wait forever without some acknowledgment

12

Challenges of Reliable Data Transfer
• Over a network that may cause bit errors
– Receiver detects errors and requests retransmission

• Over a lossy network with bit errors
– Some packets missing, others corrupted
– Receiver cannot easily detect loss

• Over a network that may reorder packets
– How can the receiver distinguish loss from out of

order delivery?

13

14

Automatic Repeat Request (ARQ):
Ensuring At-Least-Once Delivery

• Sender attaches a unique number (nonce) to
each data packet sent; keeps copy of sent packet

• Receiver returns acknowledgement (ACK) for
each data packet received, containing nonce

• Sender sets a timer on each transmission
– timer expires before ACK returns à retransmit

the packet
– ACK returns before timer expires à cancel

timer, discard saved packet copy

15

Fundamental Problem: Estimating RTT

• Round-Trip Time (RTT): the end-to-end delay for
data to reach receiver and ACK to reach sender,
comprised of:
– propagation delay on links
– serialization delay at each hop
– queuing delay at routers

• Design alternative: use fixed timer (e.g., 250 ms)
– What if the route changes?
– What if congestion at one or more routers?

16

Estimating RTT: Exponentially Weighted
Moving Average (EWMA)

• Measurements of RTT readily available
– note time t when packet sent
– corresponding ACK returns at time t’
– RTT measurement = m = t’-t

• Use just a single sample?
Too brittle (queuing, routing dynamics)

• Instead: adapt over time, using EWMA:
– measurements: m0, m1, m2, …
– fractional weight for new measurement, α
– RTTi = ((1-α) x RTTi-1 + α x mi)

17

Retransmission and Duplicate Delivery

• When sender’s retransmit timer expires, two
indistinguishable cases (why?):
– data packet dropped en route to receiver, or
– ACK dropped en route to sender

• In both cases, sender retransmits

• In latter case, duplicate data packet reaches receiver!
– How to prevent receiver from passing duplicates to

application?

18

Eliminating Duplicates:
Exactly Once Delivery

• Each packet sent with unique identifier (nonce)
• Design alternative: receiver stores a set of nonces that it has

previously seen (“tombstones”)
– if received packet seen before, drop, but resend ACK to sender

• How many tombstones must receiver store?

• Better plan: sequence numbers
– Sender marks each packet with monotonically increasing

integer sequence number (non-random nonce)
– sender includes greatest ACKed sequence number in its packets
– receiver remembers only greatest received sequence number,

drops received packets with smaller ones

19

End-to-End Integrity
• Achieved by using transport checksum
• Protects against things link-layer reliability cannot:
– router memory corruption, software bugs, &c.

• Covers data in packet, transport protocol header
• Also should cover layer-3 source and destination!
– misdelivered packet should not be inserted into data

stream at receiver, nor should be acknowledged
– receiver drops packets w/failed transport checksum
– TCP “pseudo header” covers IP source and

destination (more later)

20

Flow Control:
TCP Sliding Window

21

Window-Based Flow Control: Motivation

• Previous scheme (Stop and Wait): sender sends one packet,
awaits ACK, repeats…

• Result: one packet sent per RTT
– e.g., 70 ms RTT, 1500-byte packets: Max throughput: 171 Kbps

22

Fixed Window-Based Flow Control

• Pipeline transmissions to “keep pipe full”; overlap ACKs with data
• Sender sends window of packets sequentially, without awaiting ACKs
• Sender retains packets until ACKed, tracks which have been ACKed
• Sender sets retransmit timer for each window; when expires, resends all

unACKed packets in window

23

Choosing Window Size:
Bandwidth-Delay Product

• To keep pipe full:
– window size ≥ RTT ×

bottleneck rate

• Window too small:
can’t fill pipe

• Window too large:
unnecessary
network
load/queuing/loss

• Network bottleneck: point of slowest rate
along path between sender and receiver

TCP Support for Reliable Delivery
• Detect bit errors: checksum

– Used to detect corrupted data at the receiver
– …leading the receiver to drop the packet

• Detect missing data: sequence number
– Used to detect a gap in the stream of bytes
– ... and for putting the data back in order

• Recover from lost data: retransmission
– Sender retransmits lost or corrupted data
– Two main ways to detect lost packets

24

25

TCP Packet Header

• TCP packet: IP header + TCP header + data
• TCP header: 20 bytes long
• Checksum covers header + “pseudo header”

– IP header source and destination addresses, protocol
– Length of TCP segment (TCP header + data)

26

TCP Header Details
• Connections inherently bidirectional; all TCP headers

carry both data and ACK sequence numbers

• 32-bit sequence numbers are in units of bytes

• Source and destination ports
– multiplexing of TCP by applications
– UNIX: local ports below 1024 reserved (only root may use)

• Window: advertisement of number of bytes advertiser
willing to accept

27

TCP: Data Transmission (I)

• Each byte numbered sequentially, mod 232

• Sender buffers data in case retransmission required

• Receiver buffers data for in-order reassembly

• Sequence number (seqno) field in TCP header
indicates first user payload byte in packet

28

TCP: Data Transmission (II)

• Receiver sends cumulative ACKs
– ACK number in TCP header names highest contiguous

byte number received thus far, +1
– one ACK per received packet, OR
– Delayed ACK also possible: receiver batches ACKs, sends

one for every pair of data packets (200 ms max delay)

• Window at sender tracks bytes not yet ACK’d
– Left edge advances as packets acknowledged
– Right edge advances as updates arrive from receiver

• This is called a sliding window

TCP’s Sliding Window:
High-Level View

Sending application Receiving application

Sent, ACK’d Pending
send

Last byte
ACKed

Last byte
sent

TCP buffer in OS

Delivered
to app

Ready for app
to read

Next byte
expected

Last byte
written

Last byte
read

Last byte
received

29

TCP buffer in OS

Sent, not
ACK’d

TCP’s Sliding Window:
Window Size

• Sender’s transmit window size: avail. buffer space at sender
• Receiver indicates receive window size explicitly to sender in
window field in TCP header

– corresponds to available buffer space at receiver
– Receiver must be able to store this amount of data

• Sender uses window = min of send & receive window sizes

Last byte ACKed
Last byte sent

Next byte expected
Last byte received 30

Receiver:Window Size

OK to send
}

Sender:

31

Outline

Today:
• Fundamentals, Data transmission
• Connection establishment

Lecture 6:
• Retransmit timeouts
• RTT estimator
• Slow Start and Self-clocking
• AIMD Congestion control

Initial Sequence Number (ISN)
• Sequence number for the very first byte
– E.g., Why not a de facto ISN of 0?

• Practical issue: reuse of port numbers
– Port numbers must (eventually) get used again
– … and an old packet may still be in flight
– … and associated with the new connection

• So, TCP must change the ISN over time
– Set from a 32-bit clock that ticks every 4 microsec
– … which wraps around once every 4.55 hours!

32

33

TCP Connection Establishment: Motivation
• Goals:
– Start TCP connection between two hosts
– Avoid mixing data from old connection in new one
– Avoid confusing previous connection attempts with

current one
– Prevent (most) third parties from impersonating

(spoofing) one endpoint

• SYN packets (SYN flag in TCP header set) used to
establish connections

• Use retransmission timer to recover from lost SYNs

• What protocol meets above goals?

34

TCP Connection Establishment:
Non-Solution (I)

• Use two-way handshake
• A sends SYN to B
– A retransmits SYN if not

received
– B accepts by returning

SYN to A
• A and B can ignore duplicate

SYNs after connection
established

• But, what about delayed
data packets from old
connection?

SYN

SYN

data, seqno = 1

time

data, seqno = 512

A B

closedSYN

SYN

data, seqno = 1data, seqno = 512

data, seqno = 1024

data, seqno = 1024

35

TCP Connection Establishment:
Non-Solution (II)

• Two-way handshake, as
before, but enclose random
initial sequence numbers
on SYNs

• But, what about delayed
SYNs from old connection?
– A wrongly believes

connection successfully
established

– B will drop all of A’s
data!

time
A B

closed
SYN, seqno = k

SYN, seqno = j

data, seqno = k+1

SYN, seqno = i

data
ignored!

36

TCP Connection Establishment:
3-Way Handshake

• Set SYN flag on connection
request

• Each side chooses a random
initial sequence number
(ISN)

• Each side explicitly ACKs
the sequence number of
the SYN it’s responding to

SYN, seqno = i

SYN, seqno = j,

ACK = i+1

seqno = i+1,
ACK = j+1

time

A B

37

Robustness of 3-Way Handshake:
Delayed SYN

• A’s SYN(i) delayed: arrives
after A closes connection
– B responds: SYN(j)/ACK(i+1)

• A doesn’t recognize i+1;
responds with reset, RST
flag set in TCP header

• A rejects the connection, no
dropped data later on

SYN, seqno = i

SYN, seqno = j,

ACK = i+1

RST, ACK = j+1

time

A B

closed

38

Robustness of 3-Way Handshake:
Delayed SYN/ACK

• A attempts connection to B
– Suppose B’s SYN(k)/ACK(p)

delayed, arrives at A during
new connection attempt

• A rejects SYN(k); sends RST

• Connection from A to B
succeeds unimpeded

SYN, seqno = i

SYN, se
qno = j,

ACK = i+
1

seqno = i+1,
ACK = j+1

time

A B
closed

SYN, se
qno = k,

ACK = p

RST, ACK = k

39

Robustness of 3-Way Handshake:
Stopping Source Spoofing

• Suppose host B trusts host A,
based on A’s IP
– e.g., B allows any account

creation request from A

• Adversary M may not control A,
but may seek to impersonate A
– M may not need to receive

data from B; only send data
(e.g., “create an account
l33thax0r”)

• Can M establish a connection to
B as A?

A B

M IP
 =

 A, S
YN,

seqno = i

SYN, seqno = j,
ACK = i+1

IP = A, se
qno =

i+1, A
CK = ??

Unless they are on path
between A and B,

adversary cannot spoof
A to B or vice-versa!

Why: random ISNs on
SYNs

40

Outline

Today:
• Fundamentals, Data transmission
• Connection establishment

Coming up, in Lecture 6:
• Retransmit timeouts
• RTT estimator
• Slow Start and Self-clocking
• AIMD Congestion control

