Class Meeting: Lectures 19 and 20: Security, SDN

COS 461: Computer Networks Kyle Jamieson

[Various parts adapted from M. Freedman, J. Rexford]

Today

- Programmable Networks
 - Division of labor: control, data planes
 - Software-defined networking

Security Intro: Concepts and Applications

The Internet: A Remarkable Story

Tremendous success

From research experiment
 to global infrastructure

- Brilliance of under-specifying

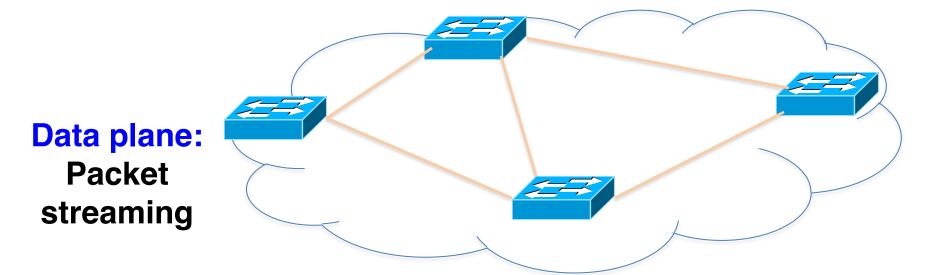
 Network: best-effort packet delivery
 Hosts: arbitrary applications
- Enables innovation in applications

 Web, P2P, VoIP, social networks, smart cars,
- But, change is easy only at the edge... $\boldsymbol{\boldsymbol{\varpi}}$

Inside the 'Net: A Different Story ...

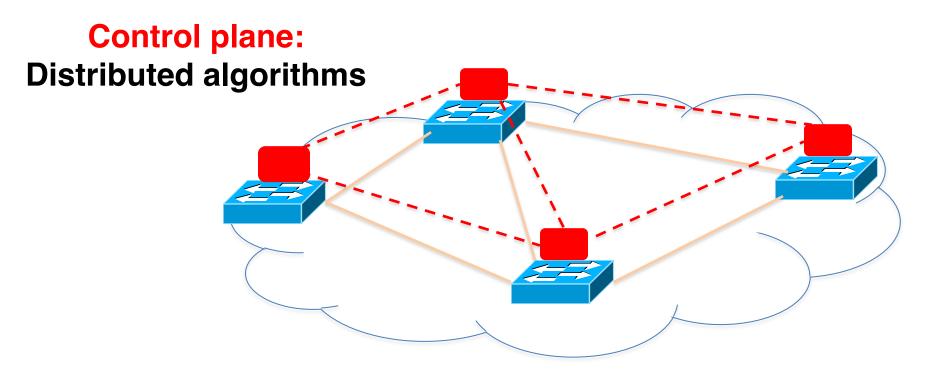
- Closed equipment
 - Software bundled with hardware
 - Vendor-specific interfaces
- Over specified
 - Slow protocol standardization-
- Few people can innovate
 - Equipment vendors write the code
 - -Long delays to introduce new features

Impacts performance, security, reliability, cost...


Networks are Hard to Manage

- Operating a network is expensive

 More than half the cost of a network
 Yet, operator error causes most outages
- Buggy software in the equipment B – Routers with 20+ million lines of code – Cascading failures, vulnerabilities, etc.
- The network is "in the way"
 Especially in data centers and the home


Rethinking the "Division of Labor"

Traditional Computer Networks

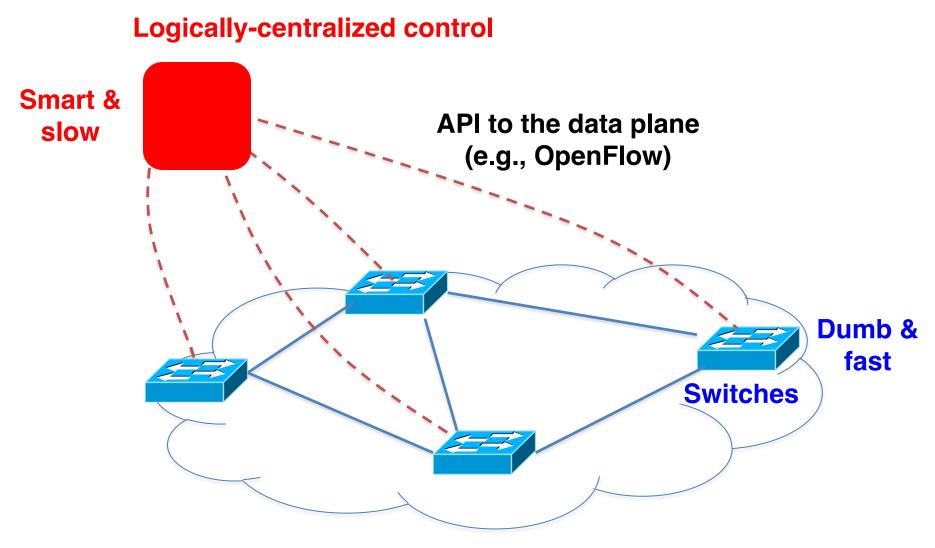
Forward, filter, buffer, mark, rate-limit, and measure packets

Traditional Computer Networks

Track topology changes, compute routes, install forwarding rules

Traditional Computer Networks

Management plane: Human time scale


Collect measurements and configure the equipment

Remove that Control Plane!

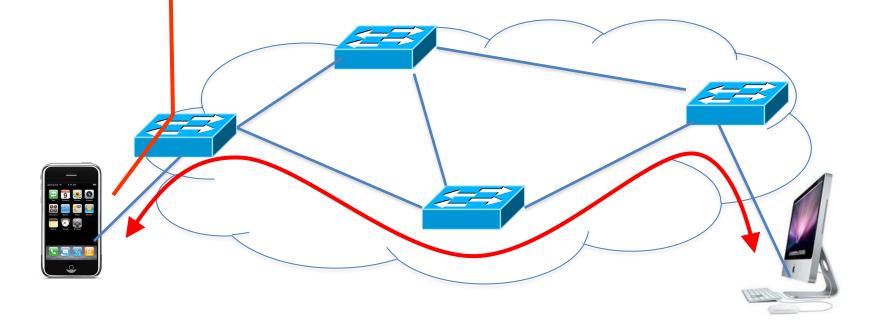
- Simpler management
 - No need to "invert" control-plane operations
- Faster pace of innovation

 Less dependence on vendors and standards
- Easier interoperability
 - Compatibility only in "wire" protocols
- Simpler, cheaper equipment
 - Minimal software

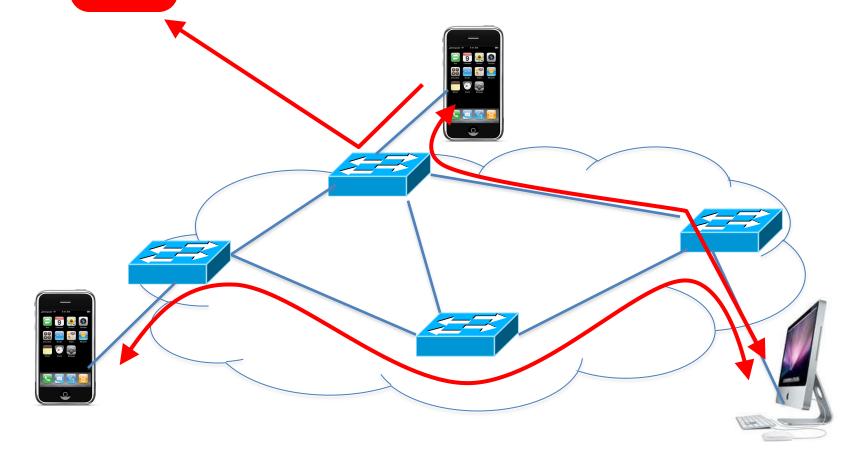
Software Defined Networking (SDN)

Data Plane: Simple Packet Handling

- Simple packet-handling rules
 - Pattern: match packet header bits


- Actions: drop, forward, modify, send to controller
- Priority: disambiguate overlapping patterns
- Counters: #bytes and #packets

- 1. src=1.2.*.*, dest=3.4.5.* → drop
- 2. src = *.*.*, dest=3.4.*.* \rightarrow forward(2)
- 3. src=10.1.2.3, dest=*.*.* \rightarrow send to controller


E.g.: Dynamic Access Control

- Inspect first packet of a connection
- Consult the access control policy
- Install rules to block or route traffic

E.g.: Seamless Mobility/Migration

- See host send traffic at new location
- Modify rules to reroute the traffic

SDN: Summary

- Software-Defined Networks: new ways of managing networks
 - -New API, OpenFlow, enables new applications

Today

Programmable Networks

Security Intro: Concepts and Applications

Internet's Design: Insecure

- Designed for simplicity
- "On by default" design
- Readily available zombie machines
- Attacks look like normal traffic
- Internet's federated operation obstructs cooperation for diagnosis/mitigation

Basic Security Properties

- Confidentiality: Concealment of information or resources
- Authenticity: Identification & assurance of origin of info
- Integrity: Trustworthiness of data/resources; preventing improper/unauthorized changes
- Availability: Ability to use desired information/resource
- Non-repudiation:
 - Access control: Eacil
- Offer of evidence that a party indeed is sender or a receiver of certain information

Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)

Security protocols at many layers

- Application layer
 - E-mail: PGP, using a web-of-trust
 - Web: HTTP-S, using a certificate hierarchy
- Transport layer
 - Transport Layer Security/ Secure Socket Layer
- Network layer
 IP Sec
- Network infrastructure
 DNS-Sec and BGP-Sec

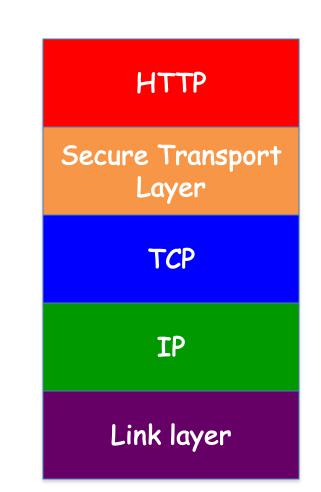
Symmetric vs. Asymmetric Crypto a.k.a. Secret vs. Public Key Crypto

- Symmetric crypto (all crypto pre 1970s)
 - Sender and recipient share a common key
 - All classical encryption algorithms are private-key
 - Dual use: confidentiality or authentication/integrity
 - Encryption vs. msg authentication code (MAC)
- Public-key crypto
 - (Public, private) key associated w/ea. entity ("Alice")
 - Anybody can encrypt to Alice, anybody can verify Alice's message
 - Only Alice can decrypt, only Alice can "sign"
 - Developed to address "key distribution" problem and "digital signatures" (w/o prior establishment)

Why still both?

- Symmetric Pros and Cons
 - Simple and very fast (1000-10000x faster than asymmetric)
 - Must agree/distribute the key beforehand
 - AES/CBC (256-bit) → 80 MB/s (for 2048 bits, .003 ms)
- Public Key Pros and Cons
 - Easier key pre-distro.: "Public Key Infrastructure" (PKI)
 - Much slower
 - 2048-RSA \rightarrow 6.1ms Decrypt, 0.16ms Encrypt
- Common "engineering" approach:
 - Best of both worlds via "hybrid" scheme: Use public key to distribute a new random "session" key b/w sender and recipient, then symmetric crypto for remainder of session

HTTP Security


HTTP-S: Securing HTTP

- HTTP sits on top of secure channel (SSL/TLS)
 - https:// vs. http://

- TCP port 443 vs. 80

- All (HTTP) bytes encrypted and authenticated

 No change to HTTP itself!
- Where to get the key???

Learning a Valid Public Key

https://www.wellsfargo.com

• What is that lock?

- Securely binds domain name to public key (PK)
 - If PK is authenticated, then any message signed by that PK cannot be forged by non-authorized party
- Believable only if you trust the attesting body
 - Bootstrapping problem: Who to trust, and how to tell if this message is actually from them?

... ⊘

Hierarchical Public Key Infrastructure

- Public key certificate
 - Binding between identity and a public key
 - "Identity" is, for example, a domain name
 - Digital signature to ensure integrity
- Certificate authority
 - Issues public key certificates and verifies identities
 - Trusted parties (e.g., VeriSign, GoDaddy, Comodo)
 - Preconfigured certificates in Web browsers

Public Key Certificate

C 🛈 🛛	https://www.wellsfargo.com			♥ ☆
WELLS	Site Information for www.wellsfargo.com		💩 Er	oroll Customer Service
Personal	Connection secure Certificate issued to: Wells Fargo & Company	>		Finar
Banking and C	Permissions		t We	ealth Management
	You have not granted this site any special permissions.		19 assis	tance and services. Lea
100 C	Clear Cookies and Site Data			
Solution View Your	Accounts	10 m		
Username				Innovat
		32		Conveni
Password		0		Conven
		2h	AN.	Building better e
Save use	rname	1	20	Learn More :

Certificate

www.wellsfargo.com	DigiCert Global CA G2	DigiCert Global Root G2
Subject Name		
Business Category	rivate Organization	
Inc. Country	S	
Inc. State/Province	elaware	
Serial Number	51212	
Country	S	
State/Province	alifornia	
Locality	an Francisco	
Organization	/ells Fargo & Company	
Organizational Unit	CG-PSG	
Common Name	ww.wellsfargo.com	
Issuer Name		
Country	S	
Organization	igiCert Inc	
Common Name	igiCert Global CA G2	
Validity		
Not Before	/7/2019, 7:00:00 PM (Eastern Daylight Time)	
Not After	/8/2021, 7:00:00 AM (Eastern Daylight Time)	
Subject Alt Names		
DNS Name	ww.wellsfargo.com	

Certificate

www.wellsfargo.com	DigiCert Global CA G2	DigiCert Global Root G2		
Subject Name				
Country	S			
Organization	n DigiCert Inc			
Common Name	DigiCert Global CA G2			
Issuer Name				
Country	S			
Organization	DigiCert Inc			
Organizational Unit	www.digicert.com			
Common Name	DigiCert Global Root G2			
Validity				
Not Before	8/1/2013, 8:00:00 AM (Eastern Daylight Time)			
Not After	r 8/1/2028, 8:00:00 AM (Eastern Daylight Time)			
Public Key Info				
Algorithm	RSA			
Key Size	2048			
Exponent	65537			
Modulus	D3:48:7C:BE:F3:05:86:5D:5B:D5:2F:85:4E:4B:E0:86:AE	D:15:AC:61:CF:5B:AF:3E:6A:0A:47:FB:9A:76:91:60:0		
Miscellaneous				
Serial Number	0C:8E:E0:C9:0D:6A:89:15:88:04:06:1E:E2:41:F9:AF			
Signature Algorithm	SHA-256 with RSA Encryption			
Version	3			
Download	PEM (cert) PEM (chain)			

Transport Layer Security (TLS)

Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape

TLS Handshake Protocol

- Send new random value, list of supported ciphers
- Send pre-secret, encrypted under PK
- Create shared secret key from pre-secret and random
- Switch to new symmetrickey cipher using shared key

- Send new random value, digital certificate with PK
- - Create shared secret key from pre-secret and random
 - Switch to new symmetrickey cipher using shared key

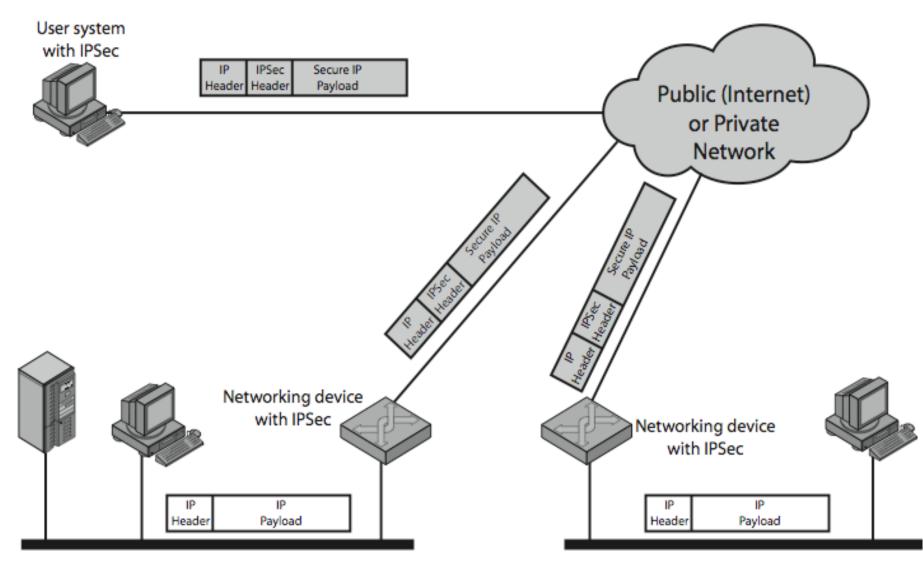
Comments on HTTPS

- HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content
- Symmetric-key crypto after public-key ops
 - Handshake protocol using public key crypto
 - Symmetric-key crypto much faster (100-1000x)
- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once
 - Adversary can't successfully drop or replay packets

IP Security

IP Security

- There are range of app-specific security mechanisms
 - eg. TLS/HTTPS, S/MIME, PGP, Kerberos, ...
- But security concerns that cut across protocol layers
- Implement by the network for all applications?


Enter IPSec!

IPSec

• General IP Security framework

- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

IPSec Uses

Benefits of IPSec

- If in a firewall/router:
 - Strong security to all traffic crossing perimeter
 - Resistant to bypass

- Below transport layer
 - Transparent to applications
 - Can be transparent to end users

• Can provide security for individual users

Conclusions: Security

- Security at many layers
 - Application, transport, and network layers
 - Customized to the properties and requirements
- Exchanging keys
 - Public key certificates
 - Certificate authorities vs. Web of trust

Coming Up

Precept this week- more SDN

Next week: Data center networks