Class Meeting: Lectures 15 and 16 HTTP and the Web, Content Distribution Networks

Kyle Jamieson

COS 461: Computer Networks

[Selected content adapted from M. Freedman, B. Maggs and S. Shenker]

Today

1. The Web: HTTP, hosting, and caching

2. Content distribution networks (CDNs)

Anatomy of an HTTP/1.0 web page fetch

- Web page = HTML file + embedded images/objects
- Stop-and-wait at the granularity of objects:
 - Close then open new TCP connection for each object
 - Incurs a TCP RTT delay each time
 - Each TCP connection may stay in "slow start"

HTTP/1.0 webpage fetch: Timeline

• Fetch 8.5 Kbyte page with 10 objects, most < 10 Kbyte

Letting the TCP connection persist

Known as HTTP keepalive

- Still stop-and-wait at the granularity of objects, at the application layer
 - HTTP response fully received before next HTTP GET dispatched
 ≥ 1 RTT per object

HTTP Keepalive avoids TCP slow starts

Pipelining within HTTP

- Idea: Pipeline HTTP GETs and their responses
- Main benefits:
- 1. Amortizes the RTT across multiple objects retrieved
- 2. Reduces overhead of HTTP requests, packing multiple requests into one packet
- Implemented in HTTP/1.1

Pipelined HTTP requests overlap RTTs

Overlaps RTTs of all requests

Today

- The Web: HTTP, hosting, and caching
 Handling heavy loads
- 2. Content distribution networks (CDNs)

Hosting: Multiple machines per site

- Problem: Overloaded popular web site

 Replicate the site across multiple machines
 Helps to handle the load
- Want to direct client to a particular replica. Why?
 Balance load across server replicas
- Solution #1: Manual selection by clients
 - Each replica has its own site name
 - Some Web page lists replicas (*e.g.*, by name, location), asks clients to click link to pick

Hosting: Load-balancer approach

Solution #2: Single IP address, multiple machines

 Run multiple machines behind a single IP address

Hosting: DNS redirection approach

- Solution #3: Multiple IP addresses, multiple machines
 - Same DNS name but different IP for each replica
 - DNS server returns IP addresses "round robin"

Hosting: Summary

- Load-balancer approach
 - No geographical diversity ×
 - TCP connection issue \times
 - Does not reduce network traffic X
- DNS redirection
 - No TCP connection issues \checkmark
 - Simple round-robin server selection
 - May be less responsive ×
 - Does not reduce network traffic ×

Web caching

- Many clients transfer the same information

 Generates redundant server and network load
 - Also, clients may experience high latency

Why web caching?

- Motivation for placing content closer to client:
 - User gets better response time
 - Content providers get happier users
 - Network gets reduced load
- Why does caching work? Exploits locality of reference
- How well does caching work?
 - Very well, up to a limit
 - Large overlap in content
 - But many unique requests

Caching with Reverse Proxies

- Cache data close to origin server \rightarrow decrease server load

 - Typically done by content providers
 Client thinks it is talking to the origin server (the server with content)
 Does not work for dynamic content

Caching with Forward Proxies

- - Cache close to clients → less network traffic, less latency Typically done by ISPs or corporate LANs <u>Client configured</u> to send HTTP requests to forward proxy
- Reduces traffic on ISP-1's access link, origin server, and backbone ISP

Caching & Load-Balancing: Outstanding problems

- Problem ca. 2002: How to reliably deliver large amounts of content to users worldwide?
 - Popular event: "Flash crowds" overwhelm (replicated) web server, access link, or back-end database infrastructure
 - More rich content: audio, video, photos

 Web caching: Diversity of content requests causes low cache hit rates (25–40%)

1. The Web: HTTP, hosting, and caching

2. Content distribution networks (CDNs)
Akamai case study

Content Distribution Networks

Proactive content replication

 Content provider (*e.g.* CNN) pushes content out from its own *origin server*

- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas

 Updates pushed to replicas when the content changes

Replica selection: Goals

Live server
 – For availability

Requires continuous monitoring of liveness, load, and performance

- Lowest load
 To balance load across the servers
- Closest

- Nearest geographically, or in round-trip time

Best performance

 Throughput, latency, reliability...

Akamai statistics

- Distributed servers
 - Servers: ~100,000
 - Networks: ~1,000
 - Countries: ~70

- Many customers
 - Apple, BBC, FOX, GM
 IBM, MTV, NASA,
 NBC, NFL, NPR, Puma,
 Red Bull, Rutgers, SAP,

- Client requests
 - 20+M per second
 - Half in the top
 45 networks
 - 20% of all Web traffic worldwide

How Akamai Works: Cache Hit

Mapping System

- To make these decisions need a map!
- Equivalence classes of IP addresses

 IP addresses experiencing similar performance
 Quantify how well they connect to each other
- Collect and combine measurements

 Ping, traceroute, BGP routes, server logs
 - *e.g.*, over 100 TB of logs per days
 - Network latency, loss, throughput, and connectivity

Routing client requests with the map

- Map each IP class to a preferred server cluster
 - Based on performance, cluster health, etc.
 - Updated roughly every minute
 - Short, 60-sec DNS TTLs in Akamai regional DNS accomplish this
- Map client request to a server in the cluster
 Load balancer selects a specific server
 e.g., to maximize the cache hit rate

Adapting to failures

- Failing hard drive on a server
 Suspends after finishing "in progress" requests
- Failed server
 - Another server takes over for the IP address
 - Low-level map updated quickly (load balancer)
- Failed cluster, or network path

 High-level map updated quickly (ping/traceroute)

Take-away points: CDNs

- Content distribution is hard
 - Many, diverse, changing objects
 - Clients distributed all over the world
- Moving content to the client is key
 - Reduces latency, improves throughput, reliability
- Content distribution solutions evolved:
 - Load balancing, reactive caching, to
 - Proactive content distribution networks

Next in 461:

Network Security and Specialized Topics:

Wireless Networking
Software-Defined Networking