
Class Meeting: Lectures 13 and 14
DNS (+Security), Anycast

Kyle Jamieson
COS 461: Computer Networks

Today

1. Review of Domain Name System (DNS)

2. DNS security

DNS in operation
• Most queries and responses are UDP datagrams
• Two types of queries:

• Recursive:

• Iterative:

www.scholarly.edu?

Answer: www.scholarly.edu A 10.0.0.1

www.scholarly.edu?

Referral: .edu NS 10.2.3.1

Client NS

NSClient

A recursive DNS lookup
(simplified, without local nameserver)

Client
. (root): NS 198.41.0.4

. (root) authority 198.41.0.4
edu.: NS 192.5.6.30
no.: NS 158.38.8.133
uk.: NS 156.154.100.3

Contact 192.5.6.30 for edu.

www.scholarly.edu?
edu. authority 192.5.6.30

scholarly.edu.: NS 12.35.1.1
pedantic.edu.: NS 19.31.1.1

www.scholarly.edu? Contact 12.35.1.1 for scholarly.edu.

scholarly.edu. authority 12.35.1.1
www.scholarly.edu.: A 12.35.2.30
imap.scholarly.edu.: A 12.35.2.31

edu.: NS 192.5.6.30
scholarly.edu.: NS 12.35.1.1

www.scholarly.edu?

www.scholarly.edu.: A 12.35.51.30

• Client’s resolver makes a
recursive query to local NS

• Local NS processing:
– Local NS sends iterative

queries to other NS’s
– or, finds answer in cache

• Local NS responds with an
answer to the client’s request

Local Name server performs iterative query
work on behalf of clients

Clients

Root NS

TLD NS

Authoritative NS

Local
NS

Recursive query

• Less burden on client

• More burden on
nameserver (has to return
an answer to the query)

• Most root and TLD
servers will not answer
(shed load)
– Local name server

answers recursive
query

Iterative query

• More burden on client

• Less burden on
nameserver (simply
refers the query to
another server)

Recursive versus iterative queries

DNS root nameservers
• 13 root servers (see http://www.root-servers.org)
– Labeled A through M

• Each server is really a cluster of servers (some geographically
distributed), replication via IP anycast

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F Internet Software

Consortium,
Palo Alto, CA

(and 37 other locations)

I Autonomica, Stockholm (plus
29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
plus Seoul, Paris,
San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)

[Slide credit: Scott Shenker]

Client Router 1

Server Instance A

Server Instance BRouter 3

Router 2

Router 4

10.0.0.1

10.0.0.1

192.168.0.1

192.168.0.2

DNS lookup for http://www.server.com/
produces a single answer:

www.server.com. IN A 10.0.0.1

IP anycast in action

8

Router 1Client

Server Instance A

Server Instance BRouter 3

Router 2

Router 4

10.0.0.1

10.0.0.1

192.168.0.1

192.168.0.2

Routing Table from Router 1:

Destination Mask Next-Hop Distance
192.168.0.0 /29 127.0.0.1 0
10.0.0.1 /32 192.168.0.1 1
10.0.0.1 /32 192.168.0.2 2

IP anycast in action

9

• Type = CNAME
– name is an alias for some “canonical”

(real) name
– e.g. www.cs.Princeton.edu is really

www-server.cs.Princeton.edu
– value is canonical name

• Type = MX (mail exchange)
– value is name of mail server

associated with domain name
– pref field discriminates between

multiple MX records

• Type = A (address)
– name is hostname
– value is IP address

• Type = NS (name
server)
– name is domain (e.g.

cs.Princeton.edu)
– value is hostname of

authoritative name
server for this domain

DNS resource record (RR): Overview
DNS is a distributed database storing resource records
RR includes: (name, type, value, time-to-live)

Example: A real recursive query (1/3)
$ dig @a.root-servers.net www.freebsd.org +norecurse
; <<>> DiG 9.4.3-P3 <<>> @a.root-servers.net www.freebsd.org

+norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57494
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 12

;; QUESTION SECTION:
;www.freebsd.org. IN A

;; AUTHORITY SECTION:
org. 172800 IN NS b0.org.afilias-nst.org.
org. 172800 IN NS d0.org.afilias-nst.org.

;; ADDITIONAL SECTION:
b0.org.afilias-nst.org. 172800 IN A 199.19.54.1
d0.org.afilias-nst.org. 172800 IN A 199.19.57.1

;; Query time: 177 msec
;; SERVER: 198.41.0.4#53(198.41.0.4)
;; WHEN: Wed Oct 28 07:32:02 2009
;; MSG SIZE rcvd: 435

“Glue” record

Example: A real recursive query (2/3)
$ dig @199.19.54.1 www.freebsd.org +norecurse
; <<>> DiG 9.4.3-P3 <<>> @a0.org.afilias-nst.org

www.freebsd.org +norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39912
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 3, ADDITIONAL: 0

;; QUESTION SECTION:
;www.freebsd.org. IN A

;; AUTHORITY SECTION:
freebsd.org. 86400 IN NS ns1.isc-sns.net.
freebsd.org. 86400 IN NS ns2.isc-sns.com.
freebsd.org. 86400 IN NS ns3.isc-sns.info.

;; Query time: 128 msec
;; SERVER: 199.19.56.1#53(199.19.56.1)
;; WHEN: Wed Oct 28 07:38:40 2009
;; MSG SIZE rcvd: 121

No glue record provided for ns1.isc-sns.net, so need to go off and resolve
(not shown here), then restart the query

Example: A real recursive query (3/3)
$ dig @ns1.isc-sns.net www.freebsd.org +norecurse
; <<>> DiG 9.4.3-P3 <<>> @ns1.isc-sns.net www.freebsd.org

+norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17037
;; flags: qr aa; QUERY: 1, ANSWER: 1, AUTHORITY: 3,

ADDITIONAL: 5
;; QUESTION SECTION:
;www.freebsd.org. IN A

;; ANSWER SECTION:
www.freebsd.org. 3600 IN A 69.147.83.33
;; AUTHORITY SECTION:
freebsd.org. 3600 IN NS ns2.isc-sns.com.
freebsd.org. 3600 IN NS ns1.isc-sns.net.
freebsd.org. 3600 IN NS ns3.isc-sns.info.

;; ADDITIONAL SECTION:
ns1.isc-sns.net. 3600 IN A 72.52.71.1
ns2.isc-sns.com. 3600 IN A 38.103.2.1
ns3.isc-sns.info. 3600 IN A 63.243.194.1

DNS Caching
• Performing all these queries takes time
– And all this before actual communication takes place
– e.g., one-second latency before starting Web

download

• Caching can greatly reduce overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.cnn.com) visited often
– Local DNS server often has the information cached

• How DNS caching works
– DNS servers cache responses to queries
– Responses include a time-to-live (TTL) field
– Server deletes cached entry after TTL expires

[Slide credit: Scott Shenker]

DNS protocol operation
• Most queries and responses via UDP, server port 53

Query ID opcod
e

T
C Z rcodeA

A
Q
R

R
D
R
A

Source port Dest port
UDP length UDP cksum

Destination IP
Source IP IP header

UDP header

DNS payload

DNS server state
UDP socket listening on port 53

Client
10.0.0.1

Client
10.0.0.2

TLD NS
10.2.0.1

11 opc
ode

T
C Z rco

de
A
A

Q
R

R
D
R
A

11001 53
UDP length UDP cksum

10.0.0.3
10.0.0.1

22 opc
ode

T
C Z rco

de
A
A

Q
R

R
D
R
A

22002 53
UDP length UDP cksum

10.0.0.3
10.0.0.2

23001 opc
ode

T
C Z rco

de
A
A

Q
R

R
D
R
A

33001 53
UDP length UDP cksum

10.1.0.1
10.0.0.3

23002 opc
ode

T
C Z rco

de
A
A

Q
R

R
D
R
A

33002 53
UDP length UDP cksum

10.2.0.1
10.0.0.3

Local NS maintains state associating
incoming Query ID à ongoing query

23001 opc
ode

T
C Z rco

de
A
A

Q
R

R
D
R
A

33001 53
UDP length UDP cksum

10.1.0.1
10.0.0.3

23002 opc
ode

T
C Z rco

de
A
A

Q
R

R
D
R
A

53 33002
UDP length UDP cksum

10.0.0.3
10.2.0.1Local NS

10.0.0.3

TLD NS
10.1.0.1

Today

1. Review of Domain Name System (DNS)

2. DNS security

Implications of subverting DNS
1. Redirect victim’s web traffic to rogue servers

2. Redirect victim’s email to rogue email servers (MX
records in DNS)

• Does Secure Sockets Layer (SSL) provide protection?
– Yes―user will get “wrong certificate warnings” if

SSL is enabled

– No―SSL not enabled or user ignores warnings

– No―how is SSL trust established? Often, by email!

Security Problem #1: Coffee shop
• As you sip your latte and surf the Web, how does your

laptop find http://google.com?

• Answer: it asks the local DNS nameserver
– Which is run by the coffee shop / their contractor
• Can return to you any answer they please

– Including a bogus site that forwards your query to
Google, gets reply to forward back to you, can change
anything in either direction

• How can you know you’re getting correct data?
– Solution (mostly): Transport Layer Security (HTTPS)

Security Problem #2: Cache poisoning
• Suppose you are evil and you control the name server for

foobar.com. You receive a request to resolve www.foobar.com
and reply:

;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:
www.foobar.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:
foobar.com. 600 IN NS dns1.foobar.com.
foobar.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:
google.com. 5 IN A 212.44.9.155

A foobar.com machine, not google.comEvidence of the attack disappears
5 seconds later!

DNS cache poisoning (cont’d)
• Okay, but how do you get the victim to look up

www.foobar.com in the first place?

• Perhaps you connect to their mail server and send
– HELO www.foobar.com
– Which their mail server then looks up to see if it

corresponds to your source address (anti-spam
measure)

• Perhaps you send many people at the victim organization
phishing email, hope one clicks

Solution to simple DNS cache poisoning:
Bailiwick checking

• DNS resolver ignores all RRs not in or under the same zone
as the question

• Widely deployed since ca. 1997
;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:
www.foobar.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:
foobar.com. 600 IN NS dns1.foobar.com.
foobar.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:
google.com. 5 IN A 212.44.9.155

Poisoning the local nameserver remotely
• Let’s get more sophisticated and try to target a

local nameserver not under our control

• When does the nameserver accept a reply?
– Reply’s dest. UDP port = query’s source UDP port
–Matching question section
–Matching (16-bit) query IDs

• So if the bad actor can achieve the above, they
can inject incorrect data into nameserver’s cache:
let’s see how

Bad actor’s
network

Predicting the next query ID
Root NS TLD NS

Victim
NS

ns.badactor.com

Query ID

…

opcode T
C Z rcodeA

A
Q
R

R
D
R
A

Source port Dest port

UDP length UDP cksum

www.badactor.com?

Next query ID = Query ID + 1

www.badactor.com? qid=5000

Remote Nameserver cache poisoning

Bad actor-
controlled Clients

Root NS TLD NS

Victim
NS

www.hs
bc

.co
m?

HSBC’s NS

www.hsbc.com?

QID = 5001

IP = bad actor’s IP, QID = 5001
IP = bad actor’s IP, QID = 5002
IP = bad actor’s IP, QID = 5003…

Legitimate IP of

www.hsbc.com,

QID = 5001

Bad actor’s
network Bad actor

Race between bad actor’s injected
replies and HSBC’s NS reply!

Requirements for a successful exploit
1. Attacker has to know UDP source port victim NS sent

the query on (otherwise UDP drops the forged reply)
– ca. 2008, most NSs used a well-known source port!

2. Attacker has to correctly guess 16-bit Query ID
– Countermeasure: name servers now use

pseudorandom query IDs
• Although, older servers used an easily-guessable

pseudorandom number generator

3. Forged replies have to arrive first

4. Name can’t already be in victim’s cache

5. Forged reply passes the bailiwick check (trivial)

Upping the ante:
Kaminsky nameserver poisoning

• Now let’s assume the nameserver uses query ID
randomization

• Two main ideas behind Kaminsky DNS cache poisoning:

1. Compromise an entire domain instead of just one IP
– Now the attacker targets the NS glue records

2. Launch multiple (K) simultaneous uncached queries to
increase odds of success, for example:
– www123.hsbc.com
– www1234.hsbc.com
– www12345.hsbc.com

Kaminsky nameserver poisoning I: One query

Bad actor-
controlled

Root NS

ns.com

Bad actor’s network
Victim

NS

www123.hsbc.com?

ns1.hsbc.com
10.0.0.1

www123.hsbc.com?
QID = 3817

ns1.hsbc.com A 10.2.0.2 QID = 39183

hsbc.com NS ns1.hsbc.com
ns1.hsbc.com A 10.0.0.1

ns1.badactor.com
10.2.0.2

ns1.hsbc.com A 10.2.0.2 QID = 9284
ns1.hsbc.com A 10.2.0.2 QID = 1932

Bad actor

?!?!
Legitimate

NS

Kaminsky nameserver poisoning:
Odds of success

• Now how likely is this attack to work?
– The attacker is successful if they don’t guess the

query ID wrongly all K times

€

Pr guess correct query id() =
1

65,535

Pr guess wrong query id K times() = 1− 1
65,535

$
%

&

'
(
K

K Pr(guess wrong query id K times)
= 1 – Pr(success)

4 0.99994

40 0.9994

400 0.994

4,000 0.94

40,000 0.54

Kaminsky nameserver poisoning II:
Multiple queries and replies

Legitimate NS is now cached in the victim NS, but bad actor
makes requests for new random names in victim’s domain

Clients

Bad actor’s network

Victim NS

www123.hsbc.com?

ns1.hsbc.com
10.0.0.1

ns1.hsbc.com A 10.2.0.2 QID = 39183

ns1.hsbc.com A 10.2.0.2 QID = 715…
ns1.badactor.com

10.2.0.2

www1234.hsbc.com?

www123.hsbc.com?

…

…

www1234.hsbc.com?

Legitimate
NS

Increasing the chances of success
• Suppose we send a burst of L queries and L forged responses

– Random query IDs everywhere, L-choose-2 possibilities

• In practice, takes about 10 minutes

€

Pr one query/response pair matches() =
1

65,535

Pr guess wrong query id L times() = 1−
1

65,535

$
%

&

'
(

L
2

$
%
&

'
(

= 1−
1

65,535

$
%

&

'
(

L(L−1)
2

L Pr(Every forgery wrong)
10 0.9994
100 0.926
290 0.54

Mitigating Kaminsky nameserver poisoning

• Solution: Randomize the query’s UDP source port as well

• Reply checking:
1. Kernel network stack matches destination port of TLD

server’s reply with UDP source port of local NS’s query
2. DNS server matches query ID of reply with query id

of request

• e.g. Msft DNS server pre-allocates
2,500 UDP ports for requests

Query ID opcode
T
C Z rcodeA

A
Q
R

R
D
R
A

Source port Dest port
UDP length UDP cksum

Destination IP
Source IP

€

Pr correct guess() =
1

65,000
"

$

%

&
'

1
2,500
"

$

%

&
'

≈ 6 ×10−9

• DNS is core Internet infrastructure

• Need to keep it secure against attack
–Many subtleties, attacks, and countermeasures

• In past decade, Transport Layer Security (HTTPS)
has helped the situation

33

Conclusions

