Class Meeting, Lectures 11 & 12: Wide Area Routing

Kyle Jamieson COS 461: Computer Networks

Context: Autonomous Systems

- A routing domain is called an Autonomous System (AS)
 - Each AS known by unique 16-bit number
 - AS owns one or handful of address prefixes; allocates addresses under those prefixes
 - AS typically a commercial entity or other organization
 - ASes often competitors (e.g., different ISPs)
- Interior Gateway Protocols (IGPs) (e.g., DV, LS) route within individual ASes
- Exterior Gateway Protocols (EGPs) (e.g., BGP) route among ASes

Today

1. <u>Recap of BGP wide area routing</u>

- 2. Integrating IGP and BGP
- 3. BGP (in)stability
- 4. BGP Route monitoring

Global Internet Routing

(Another) Tier-1 ISP

Tier-2 ISP

Tiers of ISPs:

- Tier 1: geographically global, ISP customers, no default routes
- Tier 2: regional geographically
- Tier 3: local geographically, end customers

Each ISP is an AS

 AS operator sets policies for how to route to others, how to let others route to them

AS-AS Relationship: Customers and Providers

- Examples:
 - Smaller ASes (corporations, universities)
 typically purchase connectivity from ISPs
 - Regional ISPs typically purchase connectivity from global ISPs
- Each such connection has two roles:
 - Customer: smaller AS paying for connectivity
 - Provider: larger AS being paid for connectivity

AS-AS Relationship: Customer-Provider Transit

- Provider-Customer AS-AS connections are also called transit
 - Provider allows customer to route to (nearly) all destinations in its routing tables
- Transit nearly always involves payment from customer to provider

AS-AS Relationship: Peering

- Peering: two ASes (usually ISPs) mutually allow one another to route to some of the destinations in their routing tables
 - By contract, but usually no money changes hands, so long as traffic ratio is narrower than, e.g., 4:1

Financial Motives: Peering and Transit

- Peering relationship often between competing ISPs
- Incentives to peer:
 - Typically, two ISPs notice their own direct customers originate a lot of traffic for the other
 - Each can avoid paying transit costs to others for this traffic; shunt it directly to one another
 - Often better performance (shorter latency, lower loss rate) as avoid transit via another provider
 - Easier than stealing one another's customers
- Tier 1s must typically peer with one another to build complete, global routing tables

The Meaning of Advertising Routes

- AS A advertises a route for destination D to AS B: effectively an offer to forward all traffic from AS B to D
- Forwarding traffic costs bandwidth
- AS' incentive to control which routes they advertise:
 - no one wants to forward packets without being compensated to do so
 - e.g., when peering, only let neighboring AS send to specific own customer destinations enumerated peering contract

Example -- AS Relationships: Valid and Invalid Paths

Path 12d Path 7d Path 58d Path 643d Path 85d Path 65d Path 143d

-----> Customer-Provider Arrow goes from customer to provider ------ Peer-Peer

Example -- AS Relationships: Valid and Invalid Paths

Path 1 2 dValidPath 7 dValidPath 5 8 dInvalidPath 6 4 3 dValidPath 8 5 dValidPath 6 5 dInvalidPath 1 4 3 dInvalid

-----> Customer-Provider Arrow goes from customer to provider ------ Peer

Using Route Attributes

- Recall: BGP route advertisement is simply:
 IP Prefix: [Attribute 0] [Attribute 1] [...]
- Administrators enforce policy routing using attributes:
 - filter and rank routes based on attributes
 - modify "next hop" IP address attribute
 - tag a route with attribute to influence ranking and filtering of route at other routers

Synthesis:

Multiple Attributes into Policy Routing

• How do attributes interact? Priority order:

Priority	Rule	Details
1	LOCAL PREF	Highest LOCAL PREF (e.g., prefer transit customer routes over peer and provider routes)
2	ASPATH	Shortest ASPATH length
3	MED	Lowest MED
4	eBGP > iBGP	Prefer routes learned over eBGP vs. over iBGP
5	IGP path	"Nearest" egress router
6	Router ID	Smallest router IP address

Today

1. Recap of BGP wide area routing

- 2. Integrating IGP and BGP
- 3. BGP (in)stability
- 4. BGP Route monitoring

Integrating Interdomain and Intradomain Routing (1/2)

- Option #1: Stub AS that only connects to other autonomous systems at a single point
 - Inject *default route* to border router into the intradomain routing protocol
- Ooption #2: Inject BGP routes into IGP

Integrating Interdomain and Intradomain Routing: Backbone Networks (2/2)

<u>Option #3: Interior BGP (iBGP):</u> redistribute routes learned by the *BGP speakers* at the AS edges to all the other routers

Today

1. Recap of BGP wide area routing

- 2. Integrating IGP and BGP
- 3. <u>BGP (in)stability</u>
- 4. BGP Route monitoring

Stable Paths Problem (SPP) Instance

- Node
 - BGP-speaking router
 - -E.g.: node 0 = destination
- Edge
 BGP adjacency
- Permitted paths
 - Set of routes to 0 at each node
 - Ranking of the paths

SPP Solution

- Highest ranked path consistent with its neighbors

Stable Paths Problem (SPP) Instance

- 1. Does 5 have a path to 0?
- 2. Will 1 use the direct path to 0?

Stable Paths Problem (SPP) Instance

- 1. Does 5 have a path to 0?
- 2. Will 1 use the direct path to 0?

SPP May Have Multiple Solutions

Avoiding BGP Instability

- Detecting conflicting policies
 - Computationally expensive
 - Requires too much cooperation
- Detecting oscillations
 - Observing the repetitive BGP routing messages
- Restricted routing policies and topologies

 Policies based on business relationships

Today

1. Recap of BGP wide area routing

- 2. Integrating IGP and BGP
- 3. BGP (in)stability
- 4. BGP Route monitoring

Motivation for BGP Monitoring

- Visibility into external destinations
 - What neighboring ASes are telling your AS
 - How you are reaching external destinations
- Detecting routing anomalies
 - Increases in number of destination prefixes
 - Lost reachability or instability of some destinations
- Input to traffic-engineering tools
 - Knowing the current routes in the network

BGP Monitoring: A Wish List

- Ideally: know what the router knows
 - All externally-learned routes
 - Before applying policy and selecting best route
- How to achieve this
 - Special monitoring session on routers that tells everything they have learned
 - Packet monitoring on all links with BGP sessions
- If you can't do that, you could always do...
 - Periodic dumps of routing tables, or
 - BGP session to learn best route from router

BGP Table ("show ip bgp" at RouteViews)

* 3 0 0 0 205 215 45 50 0 4006 701 80 i	
* 167.142.3.6 0 5056 701 80 i	
* 157.22.9.7 0 715 1 701 80 i	
* 195.219.96.239 0 8297 6453 701 80 i	
* 195.211.29.254 0 5409 6667 6427 3356 701	80 i
*> 12.127.0.249 0 7018 701 80 i	
* 213.200.87.254 929 0 3257 701 80 i	
* 9.184.112.0/20 205.215.45.50 0 4006 6461 3786 i	
* 195.66.225.254 0 5459 6461 3786 i	
*> 203.62.248.4 0 1221 3786 i	
* 167.142.3.6 0 5056 6461 6461 3786 i	
* 195.219.96.239 0 8297 6461 3786 i	
* 195.211.29.254 0 5409 6461 3786 i	

AS 80 is General Electric, AS 701 is UUNET, AS 7018 is AT&T

AS 3786 is DACOM (Korea), AS 1221 is Telstra

Using Routers to Monitor BGP

Talk to operational routers using SNMP or telnet at command line

Establish a "passive" BGP session from a workstation running BGP software

- (-) BGP table dumps are expensive
- (+) Table dumps show all alternate routes
- (-) Update dynamics lost
- (-) Restricted to interfaces provided by vendors

- (+) BGP table dumps do not burden operational routers
- (-) Receives only best route from BGP neighbor
- (+) Update dynamics captured
- (+) Not restricted to interfaces provided by vendors

Collect BGP Data From Many Routers

BGP Events

- Group BGP updates that "belong together"
 Same IP prefix, originating AS, or AS_PATH
- Updates that are "close" together in time
 - Maximum spacing between packets (e.g. 30 sec)
 - E.g.: events 2 and 4 are separated in time

Summary- Today

- Inter-domain routing chiefly concerned with policy, not optimality
- Behavior and configuration of BGP is complex and not fully understood
- Measurement is crucial to BGP network operations