Class Meeting, Lectures 9 \& 10: Routing in Multi-hop Networks

Kyle Jamieson
COS 461: Computer Networks

Today

1. Ethernet Spanning Tree Protocol

- Spanning tree

2. IP Interior Gateway Protocol

- Shortest paths tree

Spanning Tree

- One tree that reaches every node
- Single path between each pair of nodes
- No loops, so can support broadcast easily
- But, paths are long, and some links not used

Motivation for Spanning Tree: Extended LANs

Link layer addresses

- Switches can connect LANs as well as hosts
- Sometimes called bridges in this context
- The entirety is called an extended LAN

Spanning Tree: Motivating Example

 Suppose C sends frame to F, F responds to C

Spanning Tree: Motivating Example

Suppose C sends frame to F, F responds to C

Spanning Tree: Motivating Example

Suppose C sends frame to F, F responds to C

Spanning Tree: Motivating Example

F responds to C

Problem: Forwarding loops

E sends a frame to A (MAC address 11)

Problem: Forwarding loops

Incoming frame to E (MAC address 22)

Problem: Forwarding loops

- Can't learn the direction of a source if it's in more than one direction, so bridge learning algorithm breaks
- Why might loops form?
- Inadvertently: many people responsible for network, one person adds a bridge
- Intentionally: more connections between bridges increases redundancy, helping to cope with failure
- So we need to revise the bridge learning algorithm

The spanning tree protocol (STP)

- Manager at DEC asked Radia PerIman to build a switch (bridge) to connect two Ethernets
- Perlman's idea: Switches agree on a loop-free and connected spanning tree

- Implementers at DEC resisted (wanted simplest possible design), first customer site connected bridge to one Ethernet twice, generating a "broadcast storm"
- Once the spanning tree is formed:
- Switches block some ports from sending or receiving data
- Switches continue using the learning switch algorithm to forward over the spanning tree

Spanning Tree Algorithm

- Elect a root
- The switch with the smallest identifier
- And form a tree from there
- Algorithm
- Initialize:
- "I am the root."
- Repeatedly talk to neighbors:
- "I think node Y is the root"
- "My distance from Y is $\mathrm{d}^{\prime \prime}$

One hop

Three hops
Used in Ethernet LANs

- Update based on neighbors
- First priority: Prefer smaller id as the root
- Second priority: Prefer smaller distance to root d+1

Spanning Tree Example: Switch \#4

- Switch \#4 thinks it is the root
- Sends $(4,0,4)$ message to 2 and 7
- Notation: (my root, my distance, my ID)
- Switch \#4 hears from \#2
- Receives $(2,0,2)$ message from 2
- Thinks \#2 is root and it's one hop away

- Switch \#4 hears from \#7
- Receives $(2,1,7)$ from 7
- But, this is a longer path, so 4 prefers 4-2 over 4-7-2
- And removes 4-7 link from the tree

Today

1. Ethernet Spanning Tree Protocol

- Spanning tree

2. IP Interior Gateway Protocol

- Shortest paths tree

Shortest Paths Routing: Context

- Intra-domain routing
- Domain: group of routers owned by a single entity, typically numbering at most 100 s
- Distance Vector, Link State protocols: types of Interior Gateway Protocol (IGP)
- Shortest path(s) between pairs of nodes
- A shortest-path tree rooted at each node
- Min hop count or min sum of edge weights

Shortest-Path Problem

- Compute: path costs to all nodes
- From a given source u, to all other nodes
- Edges: Cost of the path through each outgoing link
- Next hop along the least-cost path to s

Link State: Dijkstra's Algorithm

- Flood the topology information to all nodes
- Each node computes shortest paths to other nodes

Initialization

$S=\{u\}$
for all nodes v
if (v is adjacent to u)

$$
D(v)=c(u, v)
$$

else $D(v)=\infty$

Loop

add w with smallest $D(w)$ to S
update $D(v)$ for all adjacent (to w) v:

$$
D(v)=\min \{D(v), D(w)+c(w, v)\}
$$

until all nodes are in S

Link-State Routing Example

Link-State Routing Example (cont.)

Link State: Shortest-Path Tree

- Shortest-path tree from u - Forwarding table at u

dest	link
v	(u, v)
w	(u, w)
x	(u, w)
y	(u, v)
z	(u, v)
s	(u, w)
t	(u, w)

Link State: Shortest-Path Tree

Find shortest path from t to v

- Forwarding table entry at t ?

$$
(y)(t, x) \quad(M)(t, s)
$$

- Distance from t to r ?

$$
\begin{array}{llll}
\text { (Y) } 6 & \text { (M) } 7 & \text { (C) } 8 & \text { (A) } 9
\end{array}
$$

Distance Vector: Bellman-Ford Algorithm

- Define distances at each node x
- $d_{x}(y)=$ cost of least-cost path from x to y
- Update distances based on neighbors
$-d_{x}(y)=\min \left\{c(x, v)+d_{v}(y)\right\}$ over all neighbors v

$d_{u}(z)=\min \left\{c(u, v)+d_{v}(z)\right.$, $\left.c(u, w)+d_{w}(z)\right\}$

Used in RIP and EIGRP

Distance Vector Example

$$
\begin{aligned}
& d_{y}(z)=1 \\
& d_{x}(z)=4
\end{aligned}
$$

$$
\begin{aligned}
d_{v}(z) & =\min \left\{\begin{array}{l}
2+d_{y}(z), \\
\\
\\
\\
\left.1+d_{x}(z)\right\}
\end{array}\right\}
\end{aligned}
$$

Distance Vector Example (Cont.)

$$
\begin{aligned}
d_{w}(z)= & \min \left\{\begin{array}{l}
1+d_{x}(z), \\
\\
\\
\\
\\
\\
\\
\\
\\
2+d_{s}\left(d_{u}(z),\right.
\end{array}\right\}
\end{aligned}
$$

$d_{u}(z)=$
$\begin{array}{llll}\text { (Y) } 5 & \text { (M) } 6 & \text { (C) } 7\end{array}$

Distance Vector Example (Cont.)

$$
\begin{aligned}
& d_{w}(z)=\min \left\{1+d_{x}(z)\right. \text {, } \\
& 4+d_{s}(z) \text {, } \\
& \left.2+d_{u}(z)\right\} \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
d_{u}(z) & =\min \left\{3+d_{v}(z),\right. \\
& \left.=6+d_{w}(z)\right\}
\end{aligned}
$$

Next Up in 461

Midterm Exam
Released online March 7, 9:00 AM Three hour time limit

Precepts this Thursday and Friday: Midterm review

