Class Meeting, Lectures 9 & 10: Routing in Multi-hop Networks

Kyle Jamieson COS 461: Computer Networks

Today

Ethernet Spanning Tree Protocol

 – Spanning tree

2. IP Interior Gateway Protocol – Shortest paths tree

Spanning Tree

- One tree that reaches every node
 - Single path between each pair of nodes
 - No loops, so can support broadcast easily
 - But, paths are long, and some links not used

Motivation for Spanning Tree: Extended LANs

- Switches can connect LANs as well as hosts
- Sometimes called bridges in this context
- The entirety is called an extended LAN

Suppose C sends frame to F, F responds to C

Spanning Tree: Motivating Example

Suppose C sends frame to F, F responds to C

Suppose C sends frame to F, F responds to C

Spanning Tree: Motivating Example F responds to C

Problem: Forwarding loops E sends a frame to A (MAC address 11)

Problem: Forwarding loops Incoming frame to E (MAC address 22)

Problem: Forwarding loops

- Can't learn the direction of a source if it's in more than one direction, so bridge learning algorithm breaks
- Why might loops form?
 - Inadvertently: many people responsible for network, one person adds a bridge
- Intentionally: more connections between bridges increases redundancy, helping to cope with failure
 - So we need to revise the bridge learning algorithm

The spanning tree protocol (STP)

- Manager at DEC asked Radia Perlman to build a switch (bridge) to connect two Ethernets
- Perlman's idea: Switches agree on a loop-free and connected spanning tree

- Implementers at DEC resisted (wanted simplest possible design), first customer site connected bridge to one Ethernet twice, generating a "broadcast storm"
- Once the spanning tree is formed:
 - Switches block some ports from sending or receiving data
 - Switches continue using the learning switch algorithm to forward over the spanning tree

Spanning Tree Algorithm

- Elect a root
 - The switch with the smallest identifier
 - And form a tree from there
- Algorithm
 - Initialize:
 - "I am the root."
 - Repeatedly talk to neighbors:
 - "I think node Y is the root"
 - "My distance from Y is d"
 - Update based on neighbors
 - First priority: Prefer smaller id as the root
 - Second priority: Prefer smaller distance to root d+1

One hop

Three hops

root

Used in Ethernet LANs

Spanning Tree Example: Switch #4

- Switch #4 thinks it is the root
 - Sends (4, 0, 4) message to 2 and 7
 - Notation: (my root, my distance, my ID)
- Switch #4 hears from #2
 - Receives (2, 0, 2) message from 2
 - Thinks #2 is root and it's one hop away
- Switch #4 hears from #7
 - Receives (2, 1, 7) from 7
 - But, this is a longer path, so 4 prefers 4-2 over 4-7-2
 - And removes 4-7 link from the tree

Today

Ethernet Spanning Tree Protocol

 Spanning tree

2. IP Interior Gateway Protocol – Shortest paths tree

Shortest Paths Routing: Context

- Intra-domain routing
 - Domain: group of routers owned by a single entity, typically numbering at most 100s
 - Distance Vector, Link State protocols: types of Interior Gateway Protocol (IGP)
- Shortest path(s) between pairs of nodes
 - A shortest-path tree rooted at each node
 - Min hop count or min sum of edge weights

Shortest-Path Problem

- Compute: *path costs* to all nodes
 - From a given source *u*, to all other nodes
 - Edges: Cost of the path through each outgoing link
 - Next hop along the least-cost path to s

Link State: Dijkstra's Algorithm

- Flood the topology information to all nodes
- Each node computes shortest paths to other nodes

Initialization

S = {u} for all nodes v if (v is adjacent to u) D(v) = c(u,v) else D(v) = ∞

<u>Loop</u>

add w with smallest D(w) to S
update D(v) for all adjacent (to w) v:
 D(v) = min{D(v), D(w) + c(w,v)}
until all nodes are in S

Link-State Routing Example

Link-State Routing Example (cont.)

Link State: Shortest-Path Tree

• Shortest-path tree from u • Forwarding table at u

Link State: Shortest-Path Tree

Find shortest path from t to v

- Forwarding table entry at t? (Y) (t, x) (M) (t, s)
- Distance from t to v? • (Y) 6 (M) 7 (C) 8 (A) 9

Distance Vector: Bellman-Ford Algorithm

- Define distances at each node x

 d_x(y) = cost of least-cost path from x to y
- Update distances based on neighbors $- d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors v

Used in RIP and EIGRP

Distance Vector Example

 $d_{y}(z) = 1$ $d_{x}(z) = 4$

 $d_v(z) = min\{ 2+d_v(z), 1+d_x(z) \}$ = 3

Distance Vector Example (Cont.)

 $d_w(z) = min\{ 1+d_x(z), 4+d_s(z), 2+d_u(z)\}$ = 5

 $d_u(z) =$

(Y) 5 (M) 6 (C) 7

25

Distance Vector Example (Cont.)

 $d_{w}(z) = \min\{ 1+d_{x}(z),$ $4+d_{s}(z),$ $2+d_{u}(z) \}$ = 5

 $d_u(z) = min\{ 3+d_v(z), 2+d_w(z) \}$ = 6

Next Up in 461

Midterm Exam Released online March 7, 9:00 AM Three hour time limit

Precepts this Thursday and Friday: Midterm review