
Classroom Protocol:
Masks Required 

• Wear your mask correctly, over your 
nose and mouth.  Extras are available 
from course staff

• Lifting the mask to take sips of a 
beverage is permitted.  Please keep your 
mask on over your nose and mouth at all 
other times.

• If you don’t feel well or have a runny 
nose, sore throat, etc., please stay home, 
we will work with you. 

• If you test positive and need to isolate, 
please contact me to confirm 
arrangements for keeping up with the 
class.



Class Meeting, Lectures 5 & 6:
Transport Layer & Congestion Control

Kyle Jamieson
COS 461: Computer Networks

[Parts adapted from material by M. Freedman (Princeton), B. Karp (UCL), D. Katabi, (MIT), S. Shenker (UCB)]

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages



Context: Transport Layer
• Best-effort network layer
– drops packets
– delays packets
– reorders packets
– corrupts packet contents

• Many applications want reliable transport
– all data reach receiver, in order they were sent
– no data corrupted
– “reliable byte stream”

• Need a transport protocol, e.g., Internet’s Transmission 
Control Protocol (TCP)
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TCP: Connection-Oriented,
Reliable Byte Stream Transport

• Sending app offers stream of bytes: d0, d1, d2, …

• Receiving app sees all bytes in same order: d0, d1, d2…
– Result: reliable byte stream transport

• But: not all applications need in-order behavior

• Each byte stream: connection, or flow

• Each connection uniquely identified by:
– <sender IP, sender port, receiver IP, receiver port>
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Sequence Numbers in TCP: Data
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence 
number = 

1st byte

B
yte 81
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Sequence Numbers in TCP: ACKs
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence 
number = 

1st byte

ACK sequence 
number = next 
expected byte
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TCP Segment
• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes on an Ethernet link

• TCP packet
– IP packet with a TCP header and data inside
– TCP header is typically 20 bytes long

• TCP packet contents (i.e. segment)
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream: 

MTU (1500) - IP header (20) - TCP header (20)

IP Hdr
IP Data

TCP HdrTCP Data (segment)
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…Emulated Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application
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Quick TCP Math
• Initial Seq No = 501.  Sender sends 4500 bytes 

successfully acknowledged.  Next sequence 
number to send is:

(Y) 5000   (M) 5001   (C) 5002

• Next 1000 byte TCP segment received.  
Receiver acknowledges with ACK number:

(Y)  5001   (M) 6000 (C)  6001

9



Quick TCP Math
• Initial Seq No = 501.  Sender sends 4500 bytes 

successfully acknowledged.  Next sequence 
number to send is:

(Y) 5000   (M) 5001   (C) 5002

• Next 1000 byte TCP segment received.  
Receiver acknowledges with ACK number:

(Y)  5001   (M) 6000 (C)  6001

10



Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open) to the host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK
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SYN

SYN ACK

ACK
Data

A B

Data

Each host tells 
its ISN to the 

other host.



SYN Loss and Web Browsing
• Upon sending SYN, sender sets a timer
– If SYN lost, timer expires before SYN-ACK 

received, sender retransmits SYN
• How should the TCP sender set the timer?
– No idea how far away the receiver is
– Some TCPs use default of 3 or 6 seconds

• Implications for loading a web page
– User gets impatient and hits reload
– … Users aborts connection, initiates new socket
– Essentially, forces a fast send of a new SYN!
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Reasons for Retransmission
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How Long Should Sender Wait?
• Sender sets a timeout to wait for an ACK
– Too short: wasted retransmissions
– Too long: excessive delays when packet lost

• TCP sets timeout as a function of the RTT
– Expect ACK to arrive after an “round-trip time”
– … plus a fudge factor to account for queuing

• But, how does the sender know the RTT?
– Running average of delay to receive an ACK
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Still, timeouts are slow (≈RTT)
• When packet n is lost…
– … packets n+1, n+2, and so on may get through

• Exploit the ACKs of these packets
– ACK says receiver is still awaiting nth packet
– Duplicate ACKs suggest later packets arrived
– Sender uses “duplicate ACKs” as a hint

• Fast retransmission
– Retransmit after “triple duplicate ACK”
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Effectiveness of Fast Retransmit
• When does Fast Retransmit work best?
– High likelihood of many packets in flight
– Long data transfers, large window size, …

• Implications for Web traffic
– Many Web transfers are short (e.g., 10 packets)
• So, often there aren’t many packets in flight

– Making fast retransmit is less likely to “kick in”
• Forcing users to click “reload” more often…
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Network Congestion: Context
• Best-effort network does not “block” calls
– So, they can easily become overloaded
– Congestion == “Load higher than capacity”

• Examples of congestion
– Link layer: Ethernet frame collisions
– Network layer: full IP packet buffers 

• Excess packets are simply dropped
– And the sender can simply retransmit

queue
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Problem: Congestion Collapse
• Network can undergo congestion collapse
– Senders retransmit the lost packets
– Leading to even greater load
– … and even more packet loss

Load

Goodput
“congestion

collapse”
Increase in load that 
results in a decrease
in useful work done.
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Detect and Respond to Congestion

• What does the end host see?
• What can the end host change?
• Distributed Resource Sharing
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TCP seeks “Fairness”
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Phase Plots
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Additive Increase/Decrease
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TCP Congestion Control
• Additive increase, multiplicative decrease
– On packet loss, divide congestion window in half
– On success for last window, increase window linearly

Window

halved

Loss
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How Should a New Flow Start?
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Time

Window

halved

Loss

But, could take a long 
time to get started!

Start slow (a small CWND) to avoid overloading network



“Slow Start” Phase
• Start with a small congestion window
– Initially, CWND is 1 MSS
– So, initial sending rate is MSS / RTT

• Could be pretty wasteful
– Might be much less than actual bandwidth
– Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
– Sender starts at a slow rate (hence the name)
– … but increases rate exponentially until the first loss
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Slow Start in Action
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Slow Start and the TCP Sawtooth

• TCP originally had no congestion control
– Source would start by sending entire receiver window
– Led to congestion collapse! 
– “Slow start” is, comparatively, slower
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Two Kinds of Loss in TCP
• Timeout vs. Triple Duplicate ACK
– Which suggests network is in worse shape?

• Timeout
– If entire window was lost, buffers may be full
– ...blasting entire CWND would cause another burst
– ...be aggressive: start over with a low CWND

• Triple duplicate ACK
– Might be do to bit errors, or “micro” congestion
– ...react less aggressively  (halve CWND)
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Repeating Slow Start After 
Timeout
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t

Window
timeout



Repeating Slow Start After 
Timeout
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t

Window

Slow-start restart: Go back to CWND of 1, but take 
advantage of knowing the previous value of CWND.

Slow start until 
reaching half of 
previous cwnd.

timeout



Conclusions
• Congestion is inevitable
– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start and slow-start restart

• Fundamental tensions
– Feedback from the network?
– Enforcement of “TCP friendly” behavior?
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Next Up in 461

Next Class Meeting:
Lectures 7 (Queue Management) & 

8 (Middleboxes, Tunneling)

Precepts this Thursday and Friday:
Hamming Codes & Cyclic Redundancy Check

Heads-up: Assignment 2 due in 10 days, 2/24!
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