‘=

Classroom Protocol:
Masks Required

Wear your mask correctly, over your
nose and mouth. Extras are available
from course staff

Lifting the mask to take sips of a
beverage is permitted. Please keep your
mask on over your nose and mouth at all
other fimes.

If you don't feel well or have a runny
nose, sore throat, etc., please stay home,
we will work with you.

If you test positive and need to isolate,
please contact me to confirm

arrangements for keeping up with the
class.

Applications

Reliable streams Messages

Best-effort global packet delivery

Best-effort /ocal packet delivery

Class Meeting, Lectures 5 & 6:
Transport Layer & Congestion Control

Kyle Jamieson
COS 461: Computer Networks

[Parts adapted from material by M. Freedman (Princeton), B. Karp (UCL), D. Katabi, (MIT), S. Shenker (UCB)]

Context: Transport Layer

« Best-effort network layer
— drops packets
— delays packets
— reorders packets
— corrupts packet contents

 Many applications want reliable transport
— all data reach receiver, in order they were sent
— no data corrupted
— "reliable byte stream”

* Need a transport _?r'o‘rocol, e.qg., Internet's Transmission
Control Protocol (TCP)

TCP: Connection-Oriented,
Reliable Byte Stream Transport

Sending app offers stream of bytes: dO, d1, d2, ...
Receiving app sees all bytes in same order: dO, d1, d2...
— Result: reliable byte stream transport

* But: not all applications need in-order behavior

Each byte stream: connection, or flow

Each connection uniquely identified by:
— <sender IP, sender port, receiver IP, receiver port>

Sequence Numbers in TCP: Data

Host A

ISN (initial sequence number)

IEELE

Sequence || Tc¢P Data
number =
15t byte

TCP Data
HostB |||

Sequence Numbers in TCP: ACKs

Host A

ISN (initial sequence number)

/V y

Sequence | | TCP Data ACK sequence
number = number = next
1% byte expected byte

TCP Data
HostB |||

TCP Segment

IP Data

g IP pac ke"' TCP Data (segment)

TCP Hdr

IP Hdr

>

— No bigger than Maximum Transmission Unit (MTU)
— E.g., up 0 1500 bytes on an Ethernet link

« TCP packet

— IP packet with a TCP header and data inside
— TCP header is typically 20 bytes long

» TCP packet contents (i.e. segment)
— No more than Maximum Segment Size (MSS) bytes

— E.g., up to 1460 consecutive bytes from the stream:
MTU (1500) - IP header (20) - TCP header (20)

..Emulated Using TCP "Segments”

Host A
S &
---------------- Segment sent when:
TCP Data 1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application
TCP Data

HOST B

0 2Ag |«
[VA
T IAg 1«
¢ A9

08 NAH |«

Quick TCP Math

 Initial Seq No = 501. Sender sends 4500 bytes
successfully acknowledged. Next sequence
number to send is:

(Y) 5000 (M)5001 (C€)5002

* Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:

(Y) 5001 (M) 6000 (C) 6001

Quick TCP Math

 Initial Seq No = 501. Sender sends 4500 bytes
successfully acknowledged. Next sequence

number to send is:
(Y) 5000 [(M) 5001

(C) 5002

* Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:

(Y) 5001 (M) 6000

(C) 6001

10

Establishing a TCP Connection

A B

S&
CK
SR Each host tells
W its ISN to the
D other host.
*
%

* Three-way handshake to establish connection
— Host A sends a SYN (open) to the host B
— Host B returns a SYN acknowledgment (SYN ACK)
— Host A sends an ACK to acknowledge the SYN ACK

11

SYN Loss and Web Browsing

« Upon sending SYN, sender sets a timer
— If SYN lost, timer expires before SYN-ACK
received, sender retransmits SYN

 How should the TCP sender set the timer?

— No idea how far away the receiver is
— Some TCPs use default of 3 or 6 seconds

« Implications for loading a web page
— User gets impatient and hits reload
— ... Users aborts connection, initiates new socket
— Essentially, forces a fast send of a new SYNI

12

;--%

Timeout

Aok —

_Timeout

Reasons for Retransmission

\et’

CK

Packet lost

| —Pack
: \et;

Timeout

A —

_Timeout

P aCket
\

K

ACK lost
DUPLICATE
PACKET

. Timeout

Timeout

Early timeout

DUPLICATE
PACKETS

13

How Long Should Sender Wait?

« Sender sets a timeout to wait for an ACK
— Too short: wasted retransmissions
— Too long: excessive delays when packet lost

e TCP sets timeout as a function of the RTT

— Expect ACK to arrive after an “round-trip time"
— ... plus a fudge factor to account for queuing

* But, how does the sender know the RTT?
— Running average of delay to receive an ACK

14

Still, timeouts are slow (*RTT)

« When packet n is lost...
— ... packets n+1, n+2, and so on may get through

« Exploit the ACKs of these packets
— ACK says receiver is still awaiting nth packet
— Duplicate ACKs suggest later packets arrived
— Sender uses "duplicate ACKs" as a hint

 Fast retransmission
— Retransmit after "triple duplicate ACK"

Effectiveness of Fast Retransmit

« When does Fast Retransmit work best?
— High likelihood of many packets in flight
— Long data transfers, large window size, ...

* Implications for Web traffic
— Many Web transfers are short (e.g., 10 packets)
« So, often there aren't many packets in flight
— Making fast retransmit is less likely to “kick in"
* Forcing users to click "reload"” more often...

Network Congestion: Context

« Best-effort network does not "block” calls
— So, they can easily become overloaded
— Congestion == "Load higher than capacity”

« Examples of congestion
— Link layer: Ethernet frame collisions

— Network layer: full IP packet buffer's_>___>

« Excess packets are simply dropped queue
— And the sender can simply retransmit

17

Problem: Congestion Collapse

« Network can undergo congestion collapse
— Senders retransmit the lost packets
— Leading to even greater load
— ... and even more packet loss

“congestion |pcrease in load that

Goodput ” .
P collapse” L asults in a decrease
in useful work done.

Load

18

Detect and Respond to Congestion

« What does the end host see?
« What can the end host change?
 Distributed Resource Sharing

19

TCP seeks “Fairness”

User2’'s
Allocation x,

Phase Plots

Fairness
Line
X1 = Xy

User 1’ s Allocation x;

21

User2’'s
Allocation x,

Phase Plots

Fairness
Line
X1 = X3
Overload
- Max
- Throughput
Under

utifization

User 1’ s Allocation x;

22

Phase Plots

A
Fairness
Line
X1 = X2
Overload
User2's | ’.:-" Max
Allocation x, L Throughput
Under |
utifization!
! >

User 1’ s Allocation x;

23

Phase Plots

A
Fairness
Line
X1 = Xy
__________ . Overload
User2’s | ['.:-" Max
Allocation x; L Throughput
Under |
-------- utiization}---------
! >

User 1’ s Allocation x;

24

User2’'s
Allocation x,

Phase Plots

Fairness
Line
X1 = Xy

__________ Overload

, Max
""""" T Throughput

Under |
-------- utiization}--------

User 1’ s Allocation x;

25

User2’'s
Allocation x,

Phase Plots

Fairness
Line
X1 = Xy

Overload

Optimal
point

Under
utitization Efficiency

Line

User 1’ s Allocation x;

26

Additive Increase/Decrease

User2’'s
Allocation x,

Fairness
Line
X =X,

Efficiency
Line

User 1’ s Allocation x;

27

Multiplicative Increase/Decrease

Fairness
MIMD . Line
T X1 = Xa
User2's
Allocation x,
Efficiency
Line

User 1’ s Allocation x;

28

Additive Increase / Multiplicative

User2’'s
Allocation x,

Decrease

Fairness

AIMD . Line
T X=X,

Efficiency
Line

User 1’ s Allocation x;

29

TCP Congestion Control

 Additive increase, multiplicative decrease
— On packet loss, divide congestion window in half
— On success for last window, increase window linearly

Loss

Window

v
v
/ |

A

halved

|

A

Time

30

How Should a New Flow Start?

Start slow (a small CWND) to avoid overloading network

Window

Loss

v
v

v

K 1

But, could take a long
time to get started!

Time

31

"Slow Start” Phase

« Start with a small congestion window
— Initially, CWND is 1 MSS
— So, initial sending rate is MSS / RTT

 Could be pretty wasteful
— Might be much less than actual bandwidth
— Linear increase takes a long time to accelerate

 Slow-start phase (really "fast start")
— Sender starts at a slow rate (hence the name)
— ... but increases rate exponentially until the first loss

Slow Start in Action

Double CWND per round-trip time

grc [(D (N ----

. / \o’o

33

Slow Start and the TCP Sawtooth

Loss

Window

P

halved

A

Exponential “slow start”

/

« TCP originally had no congestion control
— Source would start by sending entire receiver window
— Led to congestion collapse!
— "Slow start” is, comparatively, slower

Time

34

Two Kinds of Loss in TCP

« Timeout vs. Triple Duplicate ACK
— Which suggests network is in worse shape?

* Timeout
— If entire window was lost, buffers may be full
— ...blasting entire CWND would cause another burst
— ...be aggressive: start over with a low CWND

 Triple duplicate ACK
— Might be do to bit errors, or "micro” congestion
— ...react less aggressively (halve CWND)

Repeating Slow Start After
Timeout

timeout

/

S

Window

Repeating Slow Start After
Timeout

timeout

/

Window

vz

w Slow start until

reaching half of
previous cwnd.

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

37

Conclusions

« Congestion is inevitable
— Internet does not reserve resources in advance
— TCP actively tries to push the envelope

« Congestion can be handled
— Additive increase, multiplicative decrease
— Slow start and slow-start restart

 Fundamental tensions
— Feedback from the network?
— Enforcement of "TCP friendly” behavior?

Next Up in 461

Next Class Meeting:
Lectures 7 (Queue Management) &
8 (Middleboxes, Tunneling)

Precepts this Thursday and Friday:
Hamming Codes & Cyclic Redundancy Check

Heads-up: Assignment 2 due in 10 days, 2/24!

39

