
Classroom Protocol:
Masks Required

• Wear your mask correctly, over your
nose and mouth. Extras are available
from course staff

• Lifting the mask to take sips of a
beverage is permitted. Please keep your
mask on over your nose and mouth at all
other times.

• If you don’t feel well or have a runny
nose, sore throat, etc., please stay home,
we will work with you.

• If you test positive and need to isolate,
please contact me to confirm
arrangements for keeping up with the
class.

Class Meeting, Lectures 5 & 6:
Transport Layer & Congestion Control

Kyle Jamieson
COS 461: Computer Networks

[Parts adapted from material by M. Freedman (Princeton), B. Karp (UCL), D. Katabi, (MIT), S. Shenker (UCB)]

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages

Context: Transport Layer
• Best-effort network layer
– drops packets
– delays packets
– reorders packets
– corrupts packet contents

• Many applications want reliable transport
– all data reach receiver, in order they were sent
– no data corrupted
– “reliable byte stream”

• Need a transport protocol, e.g., Internet’s Transmission
Control Protocol (TCP)

3

TCP: Connection-Oriented,
Reliable Byte Stream Transport

• Sending app offers stream of bytes: d0, d1, d2, …

• Receiving app sees all bytes in same order: d0, d1, d2…
– Result: reliable byte stream transport

• But: not all applications need in-order behavior

• Each byte stream: connection, or flow

• Each connection uniquely identified by:
– <sender IP, sender port, receiver IP, receiver port>

4

Sequence Numbers in TCP: Data
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence
number =

1st byte

B
yte 81

5

Sequence Numbers in TCP: ACKs
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence
number =

1st byte

ACK sequence
number = next
expected byte

6

TCP Segment
• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes on an Ethernet link

• TCP packet
– IP packet with a TCP header and data inside
– TCP header is typically 20 bytes long

• TCP packet contents (i.e. segment)
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream:

MTU (1500) - IP header (20) - TCP header (20)

IP Hdr
IP Data

TCP HdrTCP Data (segment)

7

…Emulated Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application

8

Quick TCP Math
• Initial Seq No = 501. Sender sends 4500 bytes

successfully acknowledged. Next sequence
number to send is:

(Y) 5000 (M) 5001 (C) 5002

• Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:

(Y) 5001 (M) 6000 (C) 6001

9

Quick TCP Math
• Initial Seq No = 501. Sender sends 4500 bytes

successfully acknowledged. Next sequence
number to send is:

(Y) 5000 (M) 5001 (C) 5002

• Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:

(Y) 5001 (M) 6000 (C) 6001

10

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open) to the host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

11

SYN

SYN ACK

ACK
Data

A B

Data

Each host tells
its ISN to the

other host.

SYN Loss and Web Browsing
• Upon sending SYN, sender sets a timer
– If SYN lost, timer expires before SYN-ACK

received, sender retransmits SYN
• How should the TCP sender set the timer?
– No idea how far away the receiver is
– Some TCPs use default of 3 or 6 seconds

• Implications for loading a web page
– User gets impatient and hits reload
– … Users aborts connection, initiates new socket
– Essentially, forces a fast send of a new SYN!

12

Reasons for Retransmission

13

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut
Packet

ACK

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

How Long Should Sender Wait?
• Sender sets a timeout to wait for an ACK
– Too short: wasted retransmissions
– Too long: excessive delays when packet lost

• TCP sets timeout as a function of the RTT
– Expect ACK to arrive after an “round-trip time”
– … plus a fudge factor to account for queuing

• But, how does the sender know the RTT?
– Running average of delay to receive an ACK

14

Still, timeouts are slow (≈RTT)
• When packet n is lost…
– … packets n+1, n+2, and so on may get through

• Exploit the ACKs of these packets
– ACK says receiver is still awaiting nth packet
– Duplicate ACKs suggest later packets arrived
– Sender uses “duplicate ACKs” as a hint

• Fast retransmission
– Retransmit after “triple duplicate ACK”

15

Effectiveness of Fast Retransmit
• When does Fast Retransmit work best?
– High likelihood of many packets in flight
– Long data transfers, large window size, …

• Implications for Web traffic
– Many Web transfers are short (e.g., 10 packets)
• So, often there aren’t many packets in flight

– Making fast retransmit is less likely to “kick in”
• Forcing users to click “reload” more often…

16

Network Congestion: Context
• Best-effort network does not “block” calls
– So, they can easily become overloaded
– Congestion == “Load higher than capacity”

• Examples of congestion
– Link layer: Ethernet frame collisions
– Network layer: full IP packet buffers

• Excess packets are simply dropped
– And the sender can simply retransmit

queue

17

Problem: Congestion Collapse
• Network can undergo congestion collapse
– Senders retransmit the lost packets
– Leading to even greater load
– … and even more packet loss

Load

Goodput
“congestion

collapse”
Increase in load that
results in a decrease
in useful work done.

18

Detect and Respond to Congestion

• What does the end host see?
• What can the end host change?
• Distributed Resource Sharing

19

?

TCP seeks “Fairness”

21

Phase Plots

Fairness
Line

x1 = x2

User 1’s Allocation x1

User 2’s
Allocation x2

22

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

23

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

24

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

25

Phase Plots

User 1’s Allocation x1

User 2’s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

26

Phase Plots

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Optimal
point

Overload

Under
utilization

Fairness
Line

x1 = x2

27

Additive Increase/Decrease

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Fairness
Line

x1 = x2AIAD

28

Multiplicative Increase/Decrease

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Fairness
Line

x1 = x2
MIMD

29

Additive Increase / Multiplicative
Decrease

Efficiency
Line

User 1’s Allocation x1

User 2’s
Allocation x2

Fairness
Line

x1 = x2
AIMD

TCP Congestion Control
• Additive increase, multiplicative decrease
– On packet loss, divide congestion window in half
– On success for last window, increase window linearly

Window

halved

Loss

30

Time

How Should a New Flow Start?

31

Time

Window

halved

Loss

But, could take a long
time to get started!

Start slow (a small CWND) to avoid overloading network

“Slow Start” Phase
• Start with a small congestion window
– Initially, CWND is 1 MSS
– So, initial sending rate is MSS / RTT

• Could be pretty wasteful
– Might be much less than actual bandwidth
– Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
– Sender starts at a slow rate (hence the name)
– … but increases rate exponentially until the first loss

32

Slow Start in Action

33

Double CWND per round-trip time

D A D D A A D D

A A

D

A

Src

Dest

D

A

1 2 4 8

Slow Start and the TCP Sawtooth

• TCP originally had no congestion control
– Source would start by sending entire receiver window
– Led to congestion collapse!
– “Slow start” is, comparatively, slower

34

Window

halved

Loss

Exponential “slow start” Time

Two Kinds of Loss in TCP
• Timeout vs. Triple Duplicate ACK
– Which suggests network is in worse shape?

• Timeout
– If entire window was lost, buffers may be full
– ...blasting entire CWND would cause another burst
– ...be aggressive: start over with a low CWND

• Triple duplicate ACK
– Might be do to bit errors, or “micro” congestion
– ...react less aggressively (halve CWND)

35

Repeating Slow Start After
Timeout

36

t

Window
timeout

Repeating Slow Start After
Timeout

37

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start until
reaching half of
previous cwnd.

timeout

Conclusions
• Congestion is inevitable
– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start and slow-start restart

• Fundamental tensions
– Feedback from the network?
– Enforcement of “TCP friendly” behavior?

38

Next Up in 461

Next Class Meeting:
Lectures 7 (Queue Management) &

8 (Middleboxes, Tunneling)

Precepts this Thursday and Friday:
Hamming Codes & Cyclic Redundancy Check

Heads-up: Assignment 2 due in 10 days, 2/24!

39

