A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

ALGORITHM DESIGN

> analysis of algorithms
> greed
> reduction

» dynamic programming

ROBERT SEDGEWICK | KEVIN WAYNE » diVide'and'Conquer

https://algs4.cs.princeton.edu

» randomization

https://algs4.cs.princeton.edu

Algorithm design

Algorithm design patterns.
Analysis of algorithms.
* Greed.
» Reduction.
 Dynamic programming.
* Divide-and-conquer.

« Randomization.

ALGURITHMS

ANALYSIS
ALGORITHMS

JON KLEINBERG - EVA TARDOS

1-:.‘1:1'_'};.;-"
TIM RUUGH_GARDEN” =

Want more? See COS 240, COS 343, COS 423, COS 445, COS 451, MAT 375,

INTERVIEW QUESTIONS

facebook RSA
Go dle O RSA
Cisco SYSTEMS

v slack M
N ETFLIX - m
Square
YR :
Y. JANE

' ‘ 7VIDIA. >HREED
SPACE < A

Adobe ‘@

UBER

Morgan Stanley

<||I

DE Shaw & Co
ORACLE

VYasoO! amazon (intel®> Microsoft

ALGORITHM DESIGN

> analysis of algorithms

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

EGG DROP

Goal. Find T using fewest drops.

breaks -
<— threshold floor
| e
does not -
break

EGG DROP

Goal. Find T using fewest drops.

Rules.
* An egg that breaks cannot be reused.
* An egg that survives a fall can be reused.
* The effect of a drop is the same for all eggs.

« An egg can break on floor 1 or survive on floor n.

breaks

does not
break

—

threshold floor

EGG DROP

Goal. Find T using fewest drops.

Variant 0. 1 egg.

breaks -

Solution. Use sequential search: drop on floors -

1,2,3,... until egg breaks.

Analysis. 1 egg and T drops. -
does not

break

EGG DROP

Goal. Find T using fewest drops.
Variant 1. <« eggs.
breaks
Solution. Binary search for T.
e |nitialize [lo, hi] = [0, n+1].
« Maintain invariant: egg breaks on floor ki but not on lo.
« Repeat until length of interval is 1:
- drop on floor mid =|(lo + hi) / 2].
- if it breaks, update hi = mid.

does not
- otherwise, update lo = mid. break

Analysis. ~log, n eggs, ~log,n drops.

|

Suppose 7T is much smaller than n.
Can you guarantee ©(log 7) drops?

-
B
B
B
B
K
.
K
.
B
BN
N

binary search
to find the first 1
(0O = survive, 1 = break)

EGG DROP

Goal. Find T using fewest drops.

Variant 1. o eggs and ©(og 7) drops. =
breaks -

Solution. Use repeated doubling; then binary search. - B
 Drop on floors 1,2,4,8, 16, ...,x to find a floor
x such that the egg breaks on floor x but not on % x. -

* Binary search in interval [x, x]. - y

- N2 X

Analysis. ~log, T eggs, ~2log, T drops. does not -
« Repeated doubling: 1 egg and 1 + log, x drops. break
e Binary search: ~log, x eggs and ~log, x drops.
 Observe that T < x < 2T.

10

Algorithm design: quiz 1

Goal. Find T using fewest drops.

Variant 2. 2 edggs.

As a function of n, what is the fewest drops

that an algorithm can guarantee?

A. O()

B. O(og n)
C. O\n)
D. O(n)

breaks

does not
break

11

EGG DROP (ASYMMETRIC SEARCH)

Goal. Find T using fewest drops.

Variant 2. 2 edggs. =
breaks -

Solution. Use gridding; then sequential search. -
+ Drop at floors v, 2v/n, 3vn, ...
until first egg breaks, say at floor c¢v/n. -

- Sequential search in interval |[cvn —+/n, c¢v/n . -
Analysis. At most 2v/n drops. T -
» First egg: < v/n drops. break

+ Second egg: < v/n drops.

Signing bonus 1. Use 2 eggs and at most v2n drops.
Signing bonus 2. Use 2 eggs and O(v/T) drops.
Signing bonus 3. Use 3 eggs and O(»n'?) drops.

12

ALGORITHM DESIGN

> greed
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Greedy algorithms

Make locally optimal, irrevocable, choices at each step.

Familiar examples.
* Prim’s algorithm.
» Kruskal’s algorithm.
* Dijkstra’s algorithm.

 Huffman’s algorithm.

RS = ik o .

GREED 15 GOOD

More classic examples.

* A* search algorithm.
» Gale-Shapley algorithm for stable marriage.

* Greedy algorithm for matroids.

Caveat. Greedy algorithms rarely lead to provably optimal solutions.

14

COIN CHANGING PROBLEM AND CASHIER’S ALGORITHM

Goal. Given U. S. coin denominations { 1, 5, 10, 25, 100 },

devise a method to pay amount to customer using fewest coins.

g ’y °
i
\\th

Ex. 34¢.

6 coins

Cashier’s (greedy) algorithm. Repeatedly add the coin of the largest value

that does not exceed the remaining amount to be paid.

Ex. $2.89.

o

10 coins
15

Algorithm design: quiz 2

Is the cashier’s algorithm optimal for U.S. coin denominations { 1, 5, 10, 25, 100} ?

A. Yes, greedy algorithms are always optimal.
B. Yes, for any set of coin denominations di<d> < ... <d, provided d; = 1.
C. Yes, because of special properties of U.S. coin denominations.

D. No.

16

Properties of any optimal solution (for U.S. coin denominations)

Property 1. Number of pennies P <4.

«<— exchange argument

Pf. Replace 5 pennies with 1 nickel.

Property 2. Number of nickels N < 1. <— replace 2 nickels with 1 dime
Property 3. Number of dimes D < 2. «<— replace 3 dimes with 1 quarter and 1 nickel

Property 4. Number of quarters O <3. <—— replace 4 quarters with 1 dollar

Property 5. N+ D =< 2.

Pf.
* Properties2and 3 = N=<1and D < 2.
 If N=1and D =2, replace with 1 quarter.

significance: total amount of change from
pennies, nickels, dimes, and quarters

Property 6. P + SN + 10D + 250 =< 99.

I |

P1 = contributes P5 = contributes P4 = contributes
at most 4 at most 20 at most 75

17

Optimality of cashier’s algorithm (for U.S. coin denominations)

Proposition. Cashier’s algorithm yields unique optimal solution for denominations {1, 5, 10, 25, 100 }.

Pf.
* Suppose we are changing amount $x.yz.
* Cashier’s algorithm takes x dollar coins.
* Suppose (for the sake of contradiction) that an optimal solution takes fewer than x dollar coins.
* Then, optimal solution satisfies P+5 N+ 10D +25 Q0 = 100.
* This contradicts Property 6: T

must make change for = 100¢

P+ 35N+ 10D + 250 =< 99

using only pennies, nickels, dimes, and quarters

ALGORITHM DESIGN

Algorithms > reduction

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Reductions

Problem X reduces to problem Y if you can solve X by using an algorithm for Y.

Ex 1. Finding the median reduces to sorting.

Ex 2. Bipartite matching reduces to maxflow. instance I~ : | . Algorithm

(of problem X) for problem Y

Algorithm for problem X
Many many problems reduce to:

» Sorting.

« Maxflow.

« Suffix array.

* Shortest path.

* Minimum spanning tree.

* Linear/semidefinite programming.

Note. Reductions also play central role in computational complexity (e.g., NP-completeness).

> solution to [

20

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to r that uses at most k orange edges.

4 3
O)
k=0 s—=1-t (17)
k =1: s=»3-t (13)

k =2: s=92-3-t (11)
k =3: s=»2—-1-3-t (10)
k =4: s=»2—-1-3-t (10)

21

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is orange or black,
find shortest path from s to r that uses at most k orange edges.

A redution to shortest paths: ¢ Gk* 58—
. Create k+1 copies of the vertices in digraph G, labeled G,, G,, ..., G,. 1 10 : 9\®
« For each black edge v—w: add edge from vertex v in graph G, to vertex w in G.. 4 .
« For each orange edge v—w: add edge from vertex v in graph G; to vertex w in G, ;. Qﬁ ;

« Compute shortest path from s to any copy of +.

22

Algorithm design: quiz 3

What is worst-case running time of algorithm as a function of k, the number of vertices V,

and the number of edges E? Assume E > V and k > 0.

A. O(FElogV)
B. OGkE)
C. OKkElogV)

D. O(k%?ElogV)

23

ALGORITHM DESIGN

Algorithms
» dynamic programming

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming

* Break up problem into a series of overlapping subproblems.
» Build up solutions to larger and larger subproblems.

[caching solutions to subproblems in a table for later reuse]

Familiar examples.
* Bellman-Ford.
 Seam carving.
* Shortest paths in DAGs.

More classic examples.
* Unix diff.
 Viterbi algorithm for hidden Markov models.
* CKY algorithm for parsing context-free grammars.

* Needleman-Wunsch/Smith-Waterman for DNA sequence alignment.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Richard Bellman, *46

HOUSE COLORING PROBLEM

Goal. Paint a row of n houses red, green, or blue so that:
 Minimize total cost, where cost(i, color) is cost to paint i given color.

* No two adjacent houses have the same color.

addaaad
B R
cost(i, red) 7/ @ / 9 20

cost(i, green) 3 9 22 12
cost(i, blue) 16 10 2 /

cost to paint house i the given color
3+6+4+8+5+ 8 =34)

26

HOUSE COLORING PROBLEM: DYNAMIC PROGRAMMING FORMULATION

Goal. Paint a row of n houses red, green, or blue so that:

 Minimize total cost, where cost(i, color) is cost to paint i given color.

* No two adjacent houses have the same color.

Subproblems.
* R(i) = min cost to paint houses 1,...,i with i red.
* G(i) = min cost to paint houses 1, ...,i with i green.
* B(i) = min cost to paint houses 1, ...,i with i blue.

« Optimal cost = min { R(n), G(n), B(n) }.

Dynamic programming recurrence.
 RO) = G(0O) = B(O) =0
e R(i) = cost(i,red) + mmn{G(Gi-1), Bi—1)}
e G(i) = cost(i,green)+ min{ B(i—-1), RG-1) }
e B(i) = cost(i,blue) + min{R(Gi-1), GG-1) }

27

HOUSE COLORING: TRACE

Bottom-up DP trace. Given R(i), G(i), and B(i), easy to compute R(i+1), G(i+1), and B(i+1).

B(6) = cost(6, blue) + min { R(5), G(5) }
= 7+ min{?29, 32}
= 36

N, N, N, N, 2N, I\
ASAAAEASAE O

o o1 2 o3 |4 s 6
R(0) 0 / 9 20 21 29 46

G(i) 0 3 15 18 35 32 % 34

B(i) 0 16 13 13 20 20 36

cost to paint houses 1, 2, ..., i with house i the given color
28

HOUSE COLORING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

1nt r hew 1nt[n+1
1nt g new 1nt[n+1
int b hew 1nt[n+1

for (Aint i = 1; 1 <= n; i++) {

rli cost[1][RED Math.min(g[1-1], b[1-1
gli cost|[1] [GREEN Math.min(b[1-1 ri1-1
b1 cost[1][BLUE Math.min(r[1-1], g[1-1

return min3(r[in], gln], bl[n

Proposition. Takes ®(n) time and uses O(n) extra space.

29

ALGORITHM DESIGN

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE » diVide'and'Conquer

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Divide and conquer

* Break up problem into two or more independent subproblems.

» Solve each subproblem recursively.

 Combine solutions to subproblems to form solution to original problem.

Familiar examples.
* Mergesort.

 Quicksort.

DIVIDE._

More classic examples. 8+3 51y 7/

-.and conquer!
* Closest pair.
* Convolution and FFT.)
. o ds to take COS 2267
« Matrix multiplication. necds 1o take

* Integer multiplication.

Prototypical usage. Turn brute-force ®(n?) algorithm into ©(n log n) one.

ALGORITHM DESIGN

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

» randomization

https://algs4.cs.princeton.edu

Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.

Familiar examples.
* Quicksort.

 Quickselect.

More classic examples.

* Miller-Rabin primality testing. S | T —
Probability and Computing ANIL H,

* Rabin-Karp substring search. B\ LG ORITIIMS

Eli Upfal

REG 8 D

* Polynomial identity testing. AA

QO W

* Volume of convex body.

* Universal hashing.

 Global min cut.

NUTS AND BOLTS

Problem. A disorganized carpenter has a mixed pile of n nuts and » bolts.
 The goal is to find the corresponding pairs of nuts and bolts.
* Each nut fits exactly one bolt; each bolt fits exactly one nut.

» By fitting a nut and a bolt together, the carpenter can determine which is bigger.

Brute-force algorithm. Compare each bolt to each nut: ®(n? compares.

Challenge. Design an algorithm that makes O(n log n) compares.

39

NUTS AND BOLTS

Shuffle. Shuffle the nuts and bolts. bolts @

Partition. huts 7’

« Pick leftmost bolt i and compare against all nuts;
divide nuts smaller than i from those that are larger than i.
* Leti' be the nut that matches bolt i. Compare i’ against all bolts;

divide bolts smaller than i’ from those that are larger than i'.

4) 4)
bolts 3 0 1 4 2 @ 6 9 8 /

nUtS 2/ 1/ 4/ OI 3/ @ 7/ 8/ 9/ 6/

Divide-and-conquer. Recursively solve two independent subproblems.

2/

8/

1/

5/

9/

4/

O/

6/

3/

40

Algorithm design: quiz 6

What is the expected running time of the randomized algorithm as a function of n?

A. O
B. O(nlogn)
C. O(nlog?n)

D. ©O®?

41

NUTS AND BOLTS

Hiring bonus. Algorithm that takes O log n) time in the worst case.

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time
(Extended Abstract)

Janos Komlés 14 Yuan Ma 2 Endre Szemerédi 34

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(log n) time on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

42

ALGORITHM DESIGN

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

» credits

https://algs4.cs.princeton.edu

Credits)

Co-instructors and graduate student preceptors.

Dan Leyzberg Jérémie Lumbroso Gabriel Contreras Jennifer Lam Ross Texeira Yingxi Lin Morgan Nanez Yiming Zuo Shelley Xia Sabhya Chhabria

Undergrad graders, precept assistants, and lab TAs. Apply to be one next semester!

A final thought

“ Algorithms and data structures are love.

Algorithms and data structures are life. ”

— anonymous COS 226 student

45

© Copyright 2023 Robert Sedgewick and Kevin Wayne

46

