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Mincut problem 

Input.  A digraph with positive edge weights, source vertex s, and target vertex t.  
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Def.  A st-cut (cut) is a partition of the vertices into two disjoint sets,  
with s in one set A and t in the other set B. 
 
Def.  Its capacity is the sum of the capacities of the edges from A to B. 

Mincut problem 
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Def.  A st-cut (cut) is a partition of the vertices into two disjoint sets,  
with s in one set A and t in the other set B. 

Def.  Its capacity is the sum of the capacities of the edges from A to B.  

Mincut problem 
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Def.  A st-cut (cut) is a partition of the vertices into two disjoint sets,  
with s in one set A and t in the other set B. 
 
Def.  Its capacity is the sum of the capacities of the edges from A to B.  
 
Minimum st-cut (mincut) problem.  Find a cut of minimum capacity. 

Mincut problem 
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What is the capacity of the cut { A, E, F, G } ?

A. 11  (20 + 25 − 8 − 11 − 9 − 6)

B. 34  (8 + 11 + 9 + 6) 

C. 45  (20 + 25)

D. 79  (20 + 25 + 8 + 11 + 9 + 6) 

Maxflow:  quiz 1
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Mincut application (RAND 1950s)

“Free world” goal.  Disrupt rail network (if Cold War turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.
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rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Maxflow problem 

9

E!cient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan

https://vimeo.com/100774435

https://vimeo.com/100774435


Maxflow problem 

Input.  A digraph with positive edge weights, source vertex s, and target vertex t. 
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Maxflow problem

Def.  An st-flow (flow) is an assignment of values to the edges such that: 

・Capacity constraints:  0 ≤ edge’s flow ≤ edge’s capacity. 

・Flow conservation constraints:  inflow = outflow at every vertex (except s and t).
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Maxflow problem

Def.  An st-flow (flow) is an assignment of values to the edges such that: 

・Capacity constraints:  0 ≤ edge’s flow ≤ edge’s capacity. 

・Flow conservation constraints:  inflow = outflow at every vertex (except s and t). 

Def.  The value of a flow is the inflow at t. 

12

0 / 4

10 / 
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 / 
1010 / 15

0 / 15

value  =  5 + 10 + 10  =  25

0 / 4

0 / 6

10 / 16

0 / 15

we assume no edges incident to s or from t



Maxflow problem

Def.  An st-flow (flow) is an assignment of values to the edges such that: 

・Capacity constraints:  0 ≤ edge’s flow ≤ edge’s capacity. 

・Flow conservation constraints:  inflow = outflow at every vertex (except s and t). 

Def.  The value of a flow is the inflow at t. 

Maximum st-flow (maxflow) problem.  Find a flow of maximum value. 
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Maxflow application (Tolstoǐ 1930s)

Soviet Union goal.  Maximize flow of supplies to Eastern Europe.

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.
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rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Input.  A digraph with positive edge weights, source vertex s, and target vertex t.  
Mincut problem.  Find a cut of minimum capacity.  
Maxflow problem.  Find a flow of maximum value. 
 
 
 
 
 
 
 
 
 
 
 
 
Remarkable fact.  These two problems are dual!  [stay tuned]
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Ford–Fulkerson algorithm demo

Initialization.  Start with 0 flow.
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Ford–Fulkerson algorithm demo

Augmenting path.  Find an undirected path from s to t such that: 

・Can increase flow on forward edges (not full). 

・Can decrease flow on backward edge (not empty).
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Ford–Fulkerson algorithm demo

Augmenting path.  Find an undirected path from s to t such that: 

・Can increase flow on forward edges (not full). 

・Can decrease flow on backward edge (not empty).
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Ford–Fulkerson algorithm demo

Augmenting path.  Find an undirected path from s to t such that: 

・Can increase flow on forward edges (not full). 

・Can decrease flow on backward edge (not empty).
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Ford–Fulkerson algorithm demo

Augmenting path.  Find an undirected path from s to t such that: 

・Can increase flow on forward edges (not full). 

・Can decrease flow on backward edge (not empty).
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Termination.  All paths from s to t are blocked by either a 

・Full forward edge. 

・Empty backward edge.

Ford–Fulkerson algorithm demo
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Maxflow:  quiz 2

Which is an augmenting path?

A. A → F → G → D → H  

B. A → F → B → G → C → D → H

C. Both A and B. 

D. Neither A nor B.
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Maxflow:  quiz 3

What is the bottleneck capacity of the augmenting path A → F → B → G → C → D → H  ?

A.  4 

B.  5 

C.  6 

D.  7
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Ford–Fulkerson algorithm

 
 
 
 
 
 
 
 
 
Fundamental questions. 

・How to find an augmenting path? 

・How many augmenting paths? 

・Guaranteed to compute a maxflow? 

・Given a maxflow, how to compute a mincut? 

26

Start with 0 flow.

While there exists an augmenting path:

  –  find an augmenting path P

  –  compute bottleneck capacity of P

  –  update flow on P by bottleneck capacity

Ford–Fulkerson algorithm
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Relationship between flows and cuts

Def.  Given a flow f, the net flow across a cut (A, B) is the sum of the flows on its edges 
from A to B minus the sum of the flows on its edges from B to A.
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Relationship between flows and cuts

Def.  Given a flow f, the net flow across a cut (A, B) is the sum of the flows on its edges 
from A to B minus the sum of the flows on its edges from B to A.
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Def.  Given a flow f, the net flow across a cut (A, B) is the sum of the flows on its edges 
from A to B minus the sum of the flows on its edges from B to A.

Relationship between flows and cuts
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Given the flow f below, what is the net flow across the cut { A, E, F, G }?

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  26  (20 + 22 − 8 −  4 − 4 − 0) 

C.  42  (20 + 22) 

D.  45  (20 + 25)

Maxflow:  quiz 4
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Relationship between flows and cuts

Flow–value lemma.  Let f  be any flow and let (A, B) be any cut.  
Then, the net flow across the cut (A, B) equals the value of the flow f. 
 
Intuition.  Conservation of flow. 
 
Pf.  By induction on the number of vertices in B. 

・Base case:  B = { t }. 

・Induction step:  remains true when moving any vertex v from A to B 

                               (because of flow conservation constraint for vertex v) 

 
Corollary.  Outflow from s  =  inflow to t  =  value of flow.

32

we assume no edges incident to s or from t



Weak duality.  Let f  be any flow and let (A, B) be any cut. 
Then, the value of flow f  ≤  the capacity of cut (A, B). 
 
Pf.  Value of flow f
 

 

Equivalent.  Value of maxflow  ≤  capacity of mincut.
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Maxflow–mincut theorem

Maxflow–mincut theorem. Value of the maxflow = capacity of mincut. 
Augmenting path theorem. A flow f is a maxflow if and only if no augmenting paths. 
 
 
Pf.  For any flow f , the following three conditions are equivalent: 
  i. Flow f  is a maxflow. 
 ii. There is no augmenting path with respect to flow f. 
iii. There exists a cut whose capacity equals the value of flow f. 
 
[ i ⇒ ii ]   We prove contrapositive:  ~ii ⇒ ~i. 

・Suppose that there is an augmenting path with respect to flow f. 

・Can improve f  by sending flow along this path. 

・Thus,  f  is not a maxflow.  ▪

34

“strong duality”



Maxflow–mincut theorem

Maxflow–mincut theorem. Value of the maxflow = capacity of mincut. 
Augmenting path theorem. A flow f is a maxflow if and only if no augmenting paths. 
 
 
Pf.  For any flow f , the following three conditions are equivalent: 
  i. Flow f  is a maxflow. 
 ii. There is no augmenting path with respect to flow f. 
iii. There exists a cut whose capacity equals the value of flow f. 
 
[ iii ⇒ i ] 

・Let (A, B) be a cut whose capacity equals the value of flow f. 

・Then, the value of any flow f ʹ 

・Thus,  f is a maxflow.  ▪

35
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weak duality
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[ ii ⇒ iii ]  

・Let f be a flow with no augmenting paths. 

・Let A be set of vertices reachable from s via a path 
with no full forward or empty backward edges. 

・By definition of cut (A, B),  s is in A. 

・By definition of cut (A, B) and flow f,  t is in B. 

・Capacity of cut (A, B)  = net flow across cut 

                                   =  value of flow f.  ▪

Maxflow–mincut theorem

36
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To compute mincut (A, B) from maxflow f : 

・By augmenting path theorem, no augmenting paths with respect to f. 

・Compute A = set of vertices connected to s by an undirected path 
with no full forward or empty backward edges. 

・Capacity of cut (A, B)  =  value of flow f  ⇒  mincut.

Computing a mincut from a maxflow

37
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Maxflow:  quiz 5

Given the following maxflow, which is a mincut?

A. A = { A, F }.

B. A = { A, B, C, F }.

C. A = { A, B, C, E, F }.

D. None of the above.
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Ford–Fulkerson algorithm analysis (with integer capacities)

Important special case.  Edge capacities are integers between 1 and U. 
 
 
Invariant.  The flow is integral throughout Ford–Fulkerson. 
Pf. 

・Bottleneck capacity is an integer. 

・Flow on an edge increases/decreases by bottleneck capacity.  ▪ 
 
Proposition.  Number of augmentations  ≤   the value of the maxflow. 
Pf.  Each augmentation increases the value of the flow by at least one.  ▪ 
 
 
Integrality theorem.  There exists an integral maxflow. 
Pf.  

・Proposition + Augmenting path theorem  ⇒  Ford–Fulkerson terminates with a maxflow. 

・Invariant  ⇒  That maxflow is integral.  ▪
40

flow on each edge is an integer

critical for some applications (stay tuned)



Bad case for Ford–Fulkerson

Bad news.  Number of augmenting paths can be very large. 
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How to choose augmenting paths?

Bad news.  Some choices lead to exponential-time algorithms. 
Good news.  Clever choices lead to polynomial-time algorithms.

50

augmenting path number of paths implementation

DFS path ≤ E U stack

random path ≤ E U randomized queue

shortest path
(fewest edges)

≤  ½ E V queue

fattest path
(max bottleneck capacity) ≤ E ln(E U) priority queue

flow network with V vertices, E edges, and integer capacities between 1 and U

polynomial in input size 
(V, E, log U)
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Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model. 

・Data mining. 

・Open-pit mining. 

・Bipartite matching. 

・Network reliability. 

・Baseball elimination. 

・Image segmentation. 

・Network connectivity. 

・Distributed computing. 

・Security of statistical data. 

・Egalitarian stable matching. 

・Multi-camera scene reconstruction. 

・Sensor placement for homeland security. 

・Many, many, more.

52

liver and hepatic vascularization segmentation



Bipartite matching problem

Problem.  Given n people and n tasks, assign the tasks to people so that: 

・Every task is assigned to a qualified person.  

・Every person is assigned to exactly one task.

53



Bipartite matching problem

Problem.  Given a bipartite graph, find a perfect matching (if one exists). 
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Maxflow formulation of bipartite matching

・Create source s, target t, one vertex i for each task, and one vertex j ʹ for each person. 

・Add edge from s to each task i (of capacity 1). 

・Add edge from each person j ʹ to t (of capacity 1). 

・Add edge from task i to qualified person j ʹ (of capacity 1 or ∞).
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Maxflow formulation of bipartite matching

1–1 correspondence between perfect matchings in bipartite graph 
and integral flows of value n in flow network. 
 
Integrality theorem + 1–1 correspondence  ⇒  Maxflow formulation is correct.
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Maxflow:  quiz 6

In the worst case, how many augmenting paths does the Ford–Fulkerson algorithm 
consider in order to find a perfect matching in a bipartite graph with n vertices per side?  

A. Θ(n) 

B. Θ(n2)

C. Θ(n3) 

D. Θ(n4)

57

value of flow ≤ n



Maximum flow algorithms:  theory highlights

58

year method worst case discovered by

1955 augmenting paths O(E V U) Ford–Fulkerson

1970 shortest augmenting paths O(E V 2) Edmonds–Karp, Dinitz

1974 blocking flows O(V 3) Karzanov

1983 dynamic trees O(E V log V) Sleator–Tarjan

1988 push–relabel O(E V log (V 2 / E)) Goldberg–Tarjan

1998 binary blocking flows O(E3/2 log (V 2 / E) log U) Goldberg–Rao

2013 compact networks O(E V) Orlin

2014 interior-point methods Õ(E V 1/2 log U) Lee–Sidford

2016 electrical flows Õ(E10/7 U 1/7) Mądry

2022 min ratio cycles O(E1+ε log2 U) CKLPGS

20xx

max-flow algorithms with E edges, V vertices, and integer capacities between 1 and U



Maximum flow algorithms:  practice

Warning.  Worst-case order-of-growth is generally not useful for predicting 
or comparing maxflow algorithm performance in practice. 
 
Often best in practice.  Push–relabel method with gap relabeling. 
 
Computer vision.  Specialized algorithms for problems with special structure.
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A b s t r a c t  

The maximum flow algorithm is distinguished by the long line of successive contributions researchers have made in 
obtaining algorithms with incrementally better worst-case complexity. Some, but not all, of these theoretical improvements 
have produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas developed 
in the recent years and to assess their utility on the empirical front. However, our study differs from previous studies in 
several ways. Whereas previous studies focus primarily on CPU time analysis, our analysis goes further and provides 
detailed insight into algorithmic behavior. It not only observes how algorithms behave but also tries to explain why 
algorithms behave that way. We have limited our study to the best previous maximum flow algorithms and some of the 
recent algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow algorithms and five 
classes of networks. The augmenting path algorithms tested by us include Dinic's algorithm, the shortest augmenting path 
algorithm, and the capacity-scaling algorithm. The preflow-push algorithms tested by us include Karzanov's algorithm, three 
implementations of Goldberg-Tarjan's algorithm, and three versions of Ahuja-Orlin-Tarjan's excess-scaling algorithms. 
Among many findings, our study concludes that the preflow-push algorithms are substantially faster than other classes of 
algorithms, and the highest-label preflow-push algorithm is the fastest maximum flow algorithm for which the growth rate in 
the computational time is O(n LS) on four out of five of our problem classes. Further, in contrast to the results of the 
worst-case analysis of maximum flow algorithms, our study finds that the time to perform relabel operations (or constructing 
the layered networks) takes at least as much computation time as that taken by augmentations and/or  pushes. © 1997 
Published by Elsevier Science B.V. 

1. I n t r o d u c t i o n  

The maximum flow problem is one of  the most 
fundamental problems in network optimization. Its 
intuitive appeal,  mathematical simplicity, and wide 
applicabil i ty has made it a popular research topic 

* Corresponding author. 

0377-2217/97/$17.00 © 1997 Published by Elsevier Science B.V. All 
PII S0377-2217(96)00269-X 

among mathematicians,  operations researchers and 
computer  scientists. 

The maximum flow problem arises in a wide 
variety of  situations. It occurs directly in problems as 
diverse as the flow of  commodit ies  in pipeline net- 
works,  parallel machine scheduling, distributed com- 
puting on multi-processor computers,  matrix round- 
ing problems,  the baseball  el imination problem, and 
the statistical security of  data. The maximum flow 
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Abst rac t .  We study efficient implementations of the push-relabel method 
for the maximum flow problem. The resulting codes are faster than the 
previous codes, and much faster on some problem families. The speedup 
is due to the combination of heuristics used in our implementations. We 
also exhibit a family of problems for which the running time of all known 
methods seem to have a roughly quadratic growth rate. 

1 I n t r o d u c t i o n  

The rnaximum flow problem is a classical combinatorial problem that  comes up 
in a wide variety of applications. In this paper we study implementations of the 
push-rdabel [13, 17] method for the problem. 

The basic methods for the maximum flow problem include the network sim- 
plex method of Dantzig [6, 7], the augmenting path method of Ford and F~lker- 
son [12], the blocking flow method of Dinitz [10], and the push-relabel method 
of Goldberg and Tarjan [14, 17]. (An earlier algorithm of Cherkassky [5] has 
many features of the push-relabel method.) The best theoretical time bounds 
for the maximum flow problem, based on the latter method, are as follows. An 
algorithm of Goldberg and Tarjan [17] runs in O(nm log(n2/m)) time, an algo- 
r i thm of King et. al. [21] runs in O(nm + n TM) time for any constant e > 0, 
an algorithm of Cheriyan et. al. [3] runs in O(nm + (n logn)  2) time with high 
probability, and an algorithm of Ahuja et. al. [1] runs in O ( a m  log (~ - -~  + 2 ) )  
time. 

Prior to the push-relabel method, several studies have shown that  Dinitz' 
algorithm [10] is in practice superior to other methods, including the network 
simplex method [6, 7], Ford-giflkerson algorithm [11, 12], Karzanov's algorithm 
[20], and Tarjan's algorithm [23]. See e.g. [18]. Several recent studies (e.g. [2, 

* Andrew V. Goldberg was supported in part by NSF Grant CCR-9307045 and a 
grant from Powell Foundation. This work was done while Boris V. Cherkassky was 
visiting Stanford University Computer Science Department and supported by the 
above-mentioned NSF and Powell Foundation grants. 



Summary

Mincut problem. Find a cut of minimum capacity. 
Maxflow problem. Find a flow of maximum value. 
Duality.  Value of the maxflow = capacity of mincut. 
 
Proven successful approaches. 

・Ford–Fulkerson (various augmenting-path strategies). 

・Preflow–push (various versions).
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