
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 10/22/20 10:05 AM

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in digraphs)

‣ breadth-first search (in graphs)

‣ topological sort

‣ challenges

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph search

Tree traversal. Many ways to explore a binary tree.

・Inorder: A C E H M R S X

・Preorder: S E A C R H M X

・Postorder: C A M H R E X S

・Level-order: S E X A R C H M

Graph search. Many ways to explore a graph.

・DFS preorder: vertices in order of calls to dfs(G, v).

・DFS postorder: vertices in order of returns from dfs(G, v).

・Breadth-first: vertices in increasing order of distance from s.

2

A
C

E

H
M

R

S
X

stack/recursion

queue

queue

stack/recursion

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in digraphs)

‣ breadth-first search (in graphs)

‣ topological sort

‣ challenges
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Shortest paths in a digraph

Problem. Find directed path from s to each other vertex that uses the fewest edges.

4

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

directed paths from 0 to 6
 0 → 2 → 7 → 4 → 5 → 1→ 3 → 6

 0 → 4 → 5 → 1 → 3 → 6

 0 → 2 → 7 → 3 → 6

 0 → 2 → 7 → 0 → 2 → 7 → 3 → 6

shortest path from 0 to 6 (length = 4)
 0 → 2 → 7 → 3 → 6

Note: shortest paths must be simple
(no repeated vertices)

Problem. Find directed path from s to each other vertex that uses the fewest edges.

Key idea. Visit vertices in increasing order of distance from s.

Key data structure. Queue of vertices to visit.

dist = 5dist = 4dist = 3dist = 2dist = 1dist = 0

Shortest paths in a digraph

5

s

Breadth-first search demo

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent from v and mark them.

6

graph G

0

4

2

1

5

3

0

4

2

1

5

3

6
8
5 0
2 4
3 2
1 2
0 1
4 3
3 5
0 2

tinyDG2.txt
V

E

Breadth-first search demo

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent from v and mark them.

7

vertices reachable from 0
(and shortest directed paths)

0

4

2

1

5

3

0

1

2

3

4

5

–

0

0

4

2

3

T

T

T

T

T

T

0

1

1

3

2

4

v edgeTo[] marked[] distTo[]

Breadth-first search

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent from v and mark them.

8

Add s to FIFO queue and mark s.
Repeat until the queue is empty:
 - remove the least recently added vertex v

 - for each unmarked vertex w adjacent from v:  

 add w to queue and mark w.

BFS (from source vertex s)

visit vertex v

Breadth-first search: Java implementation

9

public class BreadthFirstDirectedPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int[] distTo;
 …

}

 while (!queue.isEmpty()) {
 int v = queue.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 queue.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 distTo[w] = distTo[v] + 1;
 }
 }
 }
}

private void bfs(Digraph G, int s) {
 Queue<Integer> queue = new Queue<>();
 queue.enqueue(s);
 marked[s] = true;
 distTo[s] = 0;

https://algs4.cs.princeton.edu/42digraph/BreadthFirstDirectedPaths.java.html

initialize FIFO queue of vertices to explore

found new vertex w via edge v→w

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html

Breadth-first search properties

Proposition. In the worst case, BFS takes Θ(E + V) time.

Pf. Each vertex reachable from s is visited once.

Proposition. BFS computes shortest paths from s.

Pf idea. BFS examines vertices in increasing distance (number of edges) from s.

10

4 3

dist = 2dist = 1

2

1

50

dist = 0 dist = 3 dist = 4

invariant: queue contains vertices of distance k from s,
followed by ≥ 0 vertices of distance k+1 (and no other vertices)

0

4

2

1

5
3

digraph G

s

Graphs and digraphs: quiz 1

What could happen if we mark a vertex when it is dequeued (instead of enqueued)?

A. Not guaranteed to find shortest paths.

B. Takes exponential time.

C. Both A and B.

D. Neither A nor B.

11

while (!queue.isEmpty()) {

 int v = queue.dequeue();

 for (int w : G.adj(v)) {

 if (!marked[w]) {

 q.enqueue(w);

 marked[w] = true;

 edgeTo[w] = v;

 distTo[w] = distTo[v] + 1;

 }

 }

}

0 1221

SINGLE-SINK SHORTEST PATHS

Given a digraph and a target vertex t, find shortest path from every vertex to t.

Ex. t = 0

・Shortest path from 7 is 7→6→0.

・Shortest path from 5 is 5→4→2→0.

・Shortest path from 12 is 12→9→11→4→2→0.

Q. How to implement single-target shortest paths algorithm?

12

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from any vertex in the set

to every other vertex.

Ex. S = { 1, 7, 10 }.

・Shortest path to 4 is 7→6→4.

・Shortest path to 5 is 7→6→0→5.

・Shortest path to 12 is 10→12.

Q. How to implement multi-source shortest paths algorithm?

13

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 2

3 2

0 3

5 1

6

0

11 10

6 9

4 12

4

12

9

9 4 8

13
22
 4 2
 2 3
 3 2
 6 0
 0 1
 2 0
11 12
12 9
 9 10
 9 11
 7 9
10 12
11 4
 4 3
 3 5
 6 8
 8 6
 5 4
 0 5
 6 4
 6 9
 7 6

tinyDG.txt
V

E

needed for WordNet assignment

Graphs and digraphs: quiz 2

Suppose that you want to design a web crawler. Which algorithm should you use?

A. Depth-first search.

B. Breadth-first search.

C. Either A or B.

D. Neither A nor B.

14

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph?

Web crawler output

15

http://www.princeton.edu
http://www.w3.org
http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://library.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qeprize.org
http://en.wikipedia.org
...

BFS crawl

http://www.princeton.edu
http://deimos.apple.com
http://www.youtube.com
http://www.google.com
http://news.google.com
http://csi.gstatic.com
http://googlenewsblog.blogspot.com
http://labs.google.com
http://groups.google.com
http://img1.blogblog.com
http://feeds.feedburner.com
http:/buttons.googlesyndication.com
http://fusion.google.com
http://insidesearch.blogspot.com
http://agoogleaday.com
http://static.googleusercontent.com
http://searchresearch1.blogspot.com
http://feedburner.google.com
http://www.dot.ca.gov
http://www.TahoeRoads.com
http://www.LakeTahoeTransit.com
http://www.laketahoe.com
http://ethel.tahoeguide.com
...

DFS crawl

Breadth-first search application: web crawler

Goal. Crawl web, starting from some root web page, say http://www.princeton.edu.

Solution. [BFS with implicit digraph]

・Choose root web page as source s.

・Maintain a queue of websites to explore.

・Maintain a set of marked websites.

・Dequeue the next website and enqueue

any unmarked websites to which it links.

Remark. Industrial-strength web crawlers

use more sophisticated algorithms.

16

18

31

6

42 13

28

32

49

22

45

1 14

40

48

7

44

10

41
29

0

39

11

9

12

30
26

21

46

5

24

37

43

35

47

38

23

16

36

4

3 17

27

20

34

15

2

19 33

25

8

How many strong components are there in this digraph?

Bare-bones web crawler: Java implementation

17

 while (!queue.isEmpty())
 {

 while (matcher.find())
 {
 String w = matcher.group();

 }
 }

 Queue<String> queue = new Queue<>();
 SET<String> marked = new SET<>();

 String root = "http://www.princeton.edu";
 queue.enqueue(root);
 marked.add(root);

String regexp = "http://(\\w+\\.)+(\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);

String v = queue.dequeue();
StdOut.println(v);
In in = new In(v);
String input = in.readAll();

if (!marked.contains(w))
{
 marked.add(w);
 queue.enqueue(w);
}

queue of websites to crawl
set of marked websites

start crawling from root website

read in raw HTML from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

if unmarked, mark and enqueue

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in digraphs)

‣ breadth-first search (in undirected graphs)

‣ topological sort

‣ challenges
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Breadth-first search application: routing

Fewest number of hops in a communication network.

19

ARPANET, July 1977

Breadth-first search in undirected graphs

Problem. Find path between s and each other vertex that uses fewest edges.

Solution. Treat as a digraph, replacing each undirected edge with two antiparallel edges.

20

Add s to FIFO queue and mark s.
Repeat until the queue is empty:
 - remove the least recently added vertex v

 - for each unmarked vertex w adjacent to v:  

 add w to queue and mark w.

BFS (from source vertex s)

Breadth-first search application: Kevin Bacon numbers

21

SixDegrees iPhone App

Endless Games board game

https://oracleofbacon.org

http://oracleofbacon.org

Kevin Bacon graph

・Include one vertex for each performer and one for each movie.

・Connect a movie to all performers that appear in that movie.

・Compute shortest paths between s = Kevin Bacon and every other performer.

22A tiny portion of the movie–performer graph

Kevin
Bacon

Ray
McKinnon

Benedict
Cumberbatch

Nicole
Kidman

John
Gielguld

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligula

Black
Mass

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

Footloose

Imitation
Game

Whiplash

Miles
Teller

Keira
Knightley

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in digraphs)

‣ breadth-first search (in undirected graphs)

‣ topological sort

‣ challenges
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Combinational circuit

Vertex = logical gate; edge = wire.

24

A

YB
C

WordNet digraph

Vertex = synset; edge = hypernym relationship.

25

https://wordnet.princeton.edu

happening
occurrence
occurrent

natural_event

change
alteration

modification
miracle

transition
damage

harm
impairment

increase

jump
leap

act
human_action
human_activity

forfeit
forfeiture
sacrifice

event

miracle

leap
hump

saltation

action

change

group_action

resistance
opposition transgression

variationdemotion
motion

movement
move

locomotion
travel

run
running

dash
sprint

descent

jump
parachuting

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

26

tasks precedence constraint graph

0

1

4

52

6

3

feasible schedule

0. Math for CS

1. Complexity Theory

2. Machine Learning

3. Intro to CS

4. Cryptography

5. Scientific Computing

6. Algorithms

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

27

directed edges

 0→5 0→2

 0→1 3→6

 3→5 3→4

 5→2 6→4

 6→0 3→2

 1→4

DAG

0

1

4

52

6

3

topological order

edges in DAG define a “partial order” for vertices

Directed graphs: quiz 4

Suppose that you want to topologically sort the vertices in a DAG.  
Which graph-search algorithm should you use?

A. Depth-first search.

B. Breadth-first search.

C. Either A or B.

D. Neither A nor B.

28

DAG

0

1

4

52

6

3

topological order

Topological sort demo

・Run depth-first search.

・Return vertices in reverse DFS postorder.

0

1

4

52

6

3

29

a directed acyclic graph

1

4

52

6

3

0
7
11
 0 5
 0 2
 0 1
 3 6
 3 5
 3 4
 5 2
 6 4
 6 0
 3 2

tinyDAG7.txtvisit vertex after recursive calls

Topological sort demo

・Run depth-first search.

・Return vertices in reverse DFS postorder.

30

4 1 2 5 0 6 3

DFS postorder

done

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological order 
(reverse DFS postorder)

Depth-first search: reverse postorder

31

public class DepthFirstOrder
{
 private boolean[] marked;
 private Stack<Integer> reversePostorder;

 public DepthFirstOrder(Digraph G)
 {
 reversePostorder = new Stack<>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);
 }

 private void dfs(Digraph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w);
 reversePostorder.push(v);
 }

 public Iterable<Integer> reversePostorder()
 { return reversePostorder; }

}

public Iterable<Integer> reversePostorder()
{ return reversePostorder; }

returns all vertices in
“reverse DFS postorder”

run DFS from all vertices

Topological sort in a DAG: intuition

Why is the reverse DFS postorder a topological order?

・First vertex in DFS postorder has outdegree 0.

・Second vertex in DFS postorder can point only to first vertex.

・...

32

4 1 2 5 0 6 3

DFS postorder

0

1

4

52

6

3

0

1

4

52

6

3

3 6 0 5 2 1 4

topological order 
(reverse DFS postorder)

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v→w. When dfs(v) is called:

・Case 1: dfs(w) has already been called and returned.

– thus, w appears before v in DFS postorder

・Case 2: dfs(w) has not yet been called.

– dfs(w) will get called directly or indirectly by dfs(v)

– so, dfs(w) will return before dfs(v) returns

– thus, w appears before v in DFS postorder

・Case 3: dfs(w) has already been called,

but has not yet returned.

– function-call stack contains directed path from w to v

– edge v→w would complete a directed cycle

– contradiction (it’s a DAG)

dfs(0)
 dfs(1)
 dfs(4)
 4 done
 1 done
 dfs(2)
 2 done
 dfs(5)
 check 2
 5 done
0 done
check 1
check 2
dfs(3)
 check 2
 check 4
 check 5
 dfs(6)
 check 0
 check 4
 6 done
3 done
check 4
check 5
check 6
done

33

case 2
(w = 6)

case 1
(w = 2, 4, 5)

v = 3

Topological sort in a DAG: running time

Proposition. For any DAG, the DFS algorithm computes a topological order in Θ(E + V) time.

Pf. For every vertex v, there is exactly one call to dfs(v).

Q. What if we run algorithm on a digraph that is not a DAG?

34

critical that vertices are marked
(and never unmarked)

Directed cycle detection

Proposition. A digraph has a topological order if and only if contains no directed cycle.

Pf.

・If directed cycle, topological order impossible.

・If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook/precept.

35

Finding a directed cycle in a digraph

dfs(0)
 dfs(5)
 dfs(4)
 dfs(3)
 check 5

 marked[] edgeTo[] onStack[]
0 1 2 3 4 5 ... 0 1 2 3 4 5 ... 0 1 2 3 4 5 ...

1 0 0 0 0 0 - - - - - 0 1 0 0 0 0 0
1 0 0 0 0 1 - - - - 5 0 1 0 0 0 0 1
1 0 0 0 1 1 - - - 4 5 0 1 0 0 0 1 1
1 0 0 1 1 1 - - - 4 5 0 1 0 0 1 1 1

a digraph with a directed cycle

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Remark. A directed cycle implies scheduling problem is infeasible.

36

https://xkcd.com/754

https://xkcd.com/754

Directed cycle detection application: cyclic inheritance

The Java compiler does directed cycle detection.

37

public class A extends B
{
 ...
}

public class B extends C
{
 ...
}

public class C extends A
{
 ...
}

~/Desktop/graph> javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B { }
 ^
1 error

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does directed cycle detection.

38

4. GRAPHS AND DIGRAPHS II

‣ breadth-first search (in digraphs)

‣ breadth-first search (in undirected graphs)

‣ topological sort

‣ challenges
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Graph-processing challenge 1

Problem. Identify connected components.

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

40

0-1
0-5
2-6
2-3
2-4
4-6

0

6

4

21

5

3

simple DFS- or BFS-based solution
(see textbook)

0

6

4

21

5

3

0

0

1

1

1

0

1

0

1

2

3

4

5

6

v id[]

Graph-processing challenge 1

Problem. Identify connected components.

Particle detection. Given grayscale image of particles, identify “blobs.”

・Vertex: pixel.

・Edge: between two adjacent pixels with grayscale value ≥ 70.

・Blob: connected component of 20–30 pixels.

41

Graph-processing challenge 2

Problem. Is a graph bipartite?

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

42

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

simple DFS- or BFS-based solutions
(see textbook)

0-1
0-2
0-5
0-6
1-3
2-3
2-4
4-5
4-6

0

6

4

21

5

3

{ 0, 3, 4 }

Graph-processing challenge 3

Problem. Find the girth of a digraph (length of a shortest directed cycle).

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

43

0→2

0→6

1→0

2→3

3→1

2→4

4→5

5→0

6→4

0

6

4

21

5

3

0→2→3→1→0

use BFS to find shortest cycle containing vertex v;
repeat for each vertex v

Graph-processing challenge 4

Problem. Is there a (non-simple) cycle that uses every edge exactly once?

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

44

0-1
0-2
0-5
0-6
1-2
2-3
2-4
3-4
4-5
4-6

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0

yes if and only if graph is connected
and every vertex has even degree

(Leonhard Euler 1786)

moreover, if graph is Eulerian,
can find a Euler cycle via DFS

Graph-processing challenge 5

Problem. Is there a cycle that uses every vertex exactly once?

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

45

0-1
0-2
0-5
0-6
1-2
2-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

Hamilton cycle
(classic NP-complete problem)

0 -5 -3 -4 -6 -2 -1 -0

Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names?

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

46

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6

0

6

4

21

5

3

graph isomorphism is
longstanding open problem

3′

1′

5′

2′

4′

0′

6′

0′-4′
0′-5′
0′-6′
1′-4′
1′-5′
2′-4′
3′-4′
5′-6′

0⇔4′, 1⇔3′, 2⇔2′, 3⇔6′, 4⇔5′, 5⇔0′, 6⇔1′

Graph-processing challenge 7

Problem. Can you draw a graph in the plane with no crossing edges?

How difficult?

A. Any programmer could do it.

B. Diligent algorithms student could do it.

C. Hire an expert.

D. Intractable.

E. No one knows.

47

linear-time DFS-based planarity algorithm
discovered by Tarjan in 1970s

(too complicated for most practitioners)

1

6

4

2

0

5

3

0

6

4

21

5

3

0-1
0-2
0-5
0-6
3-4
3-5
4-5
4-6
5-6

try it yourself at https://www.jasondavies.com/planarity/

http://planarity.net

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph and digraph problems.

48

graph problem BFS DFS time

s-t path ✔ ✔ E + V

shortest s-t path ✔ E + V

shortest directed cycle (girth) ✔ E V

Euler cycle ✔ E + V

Hamilton cycle

bipartiteness (odd cycle) ✔ ✔ E + V

connected components ✔ ✔ E + V

strong components ✔ E + V

planarity ✔ E + V

graph isomorphism

2 1.657 V

2 c ln3 V

Graph-processing summary: algorithms of the week

49

single-source
reachability

DFS/BFS

shortest paths BFS

topological sort DFS

s t

© Copyright 2020 Robert Sedgewick and Kevin Wayne

50

