Algorithms

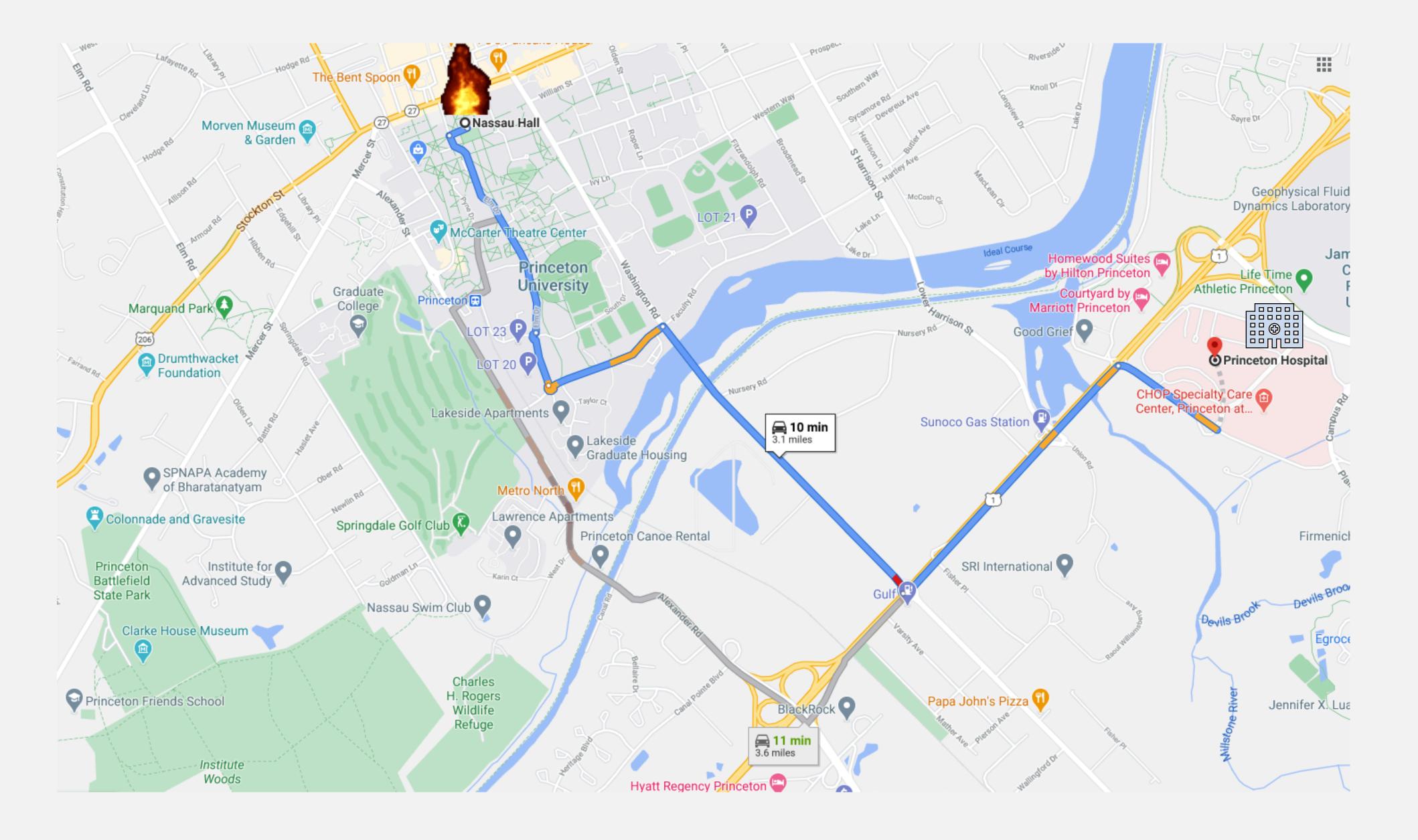
ROBERT SEDGEWICK | KEVIN WAYNE

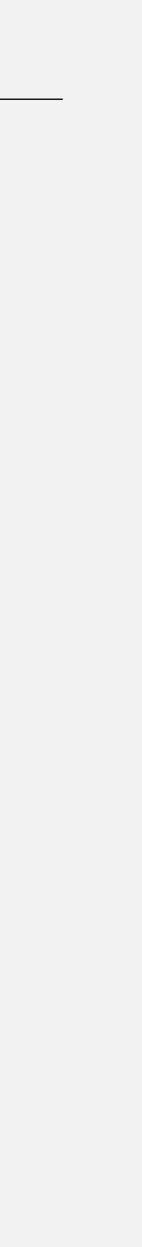
4.4 SHORTEST PATHS

Bellman–Ford algorithm

Last updated on 4/5/23 10:44 PM

Google maps



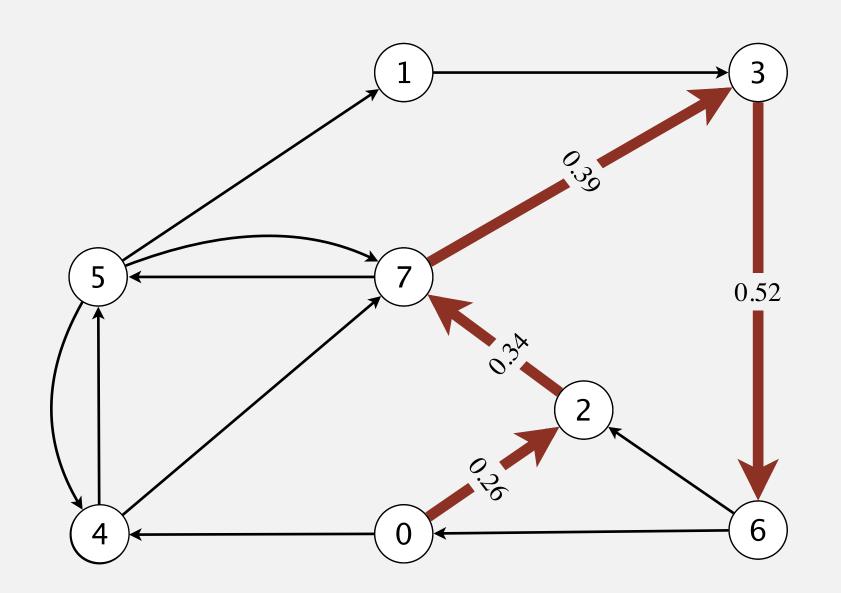


Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex.

edge-weighted digraph

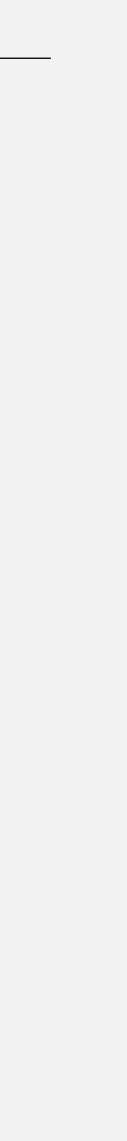
4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58
6->4	0.93



shortest path from 0 to 6 $0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$

length of path = 1.51

(0.26 + 0.34 + 0.39 + 0.52)



Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.

see Assignment 6

- Texture mapping.
- Robot navigation.
- Typesetting in T_FX .
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

https://en.wikipedia.org/wiki/Seam_carving

Which vertices?

- Source-destination: from one vertex to another vertex.
- Single source: from one vertex to every vertex.
- Single destination: from every vertex to one vertex.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights.
- Euclidean weights.
- Arbitrary weights.

Directed cycles?

can derive faster algorithms • Prohibit. (see dynamic programming lecture) Allow.

implies that shortest path from *s* to *v* exists (and that $E \ge V - 1$)

Simplifying assumption. Each vertex is reachable from s.

we assume this in today's lecture (except as noted)

Which variant in car GPS? Hint: drivers make wrong turns occasionally.

- **A.** Source-destination: from one vertex to another vertex.
- Single source: from one vertex to every vertex. B.
- Single destination: from every vertex to one vertex. С.
- **D.** All pairs: between all pairs of vertices.

4.4 SHORTEST PATHS

properties

< APIs

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Bellman–Ford algorithm

- Dijkstra's algorithm

Data structures for single-source shortest paths

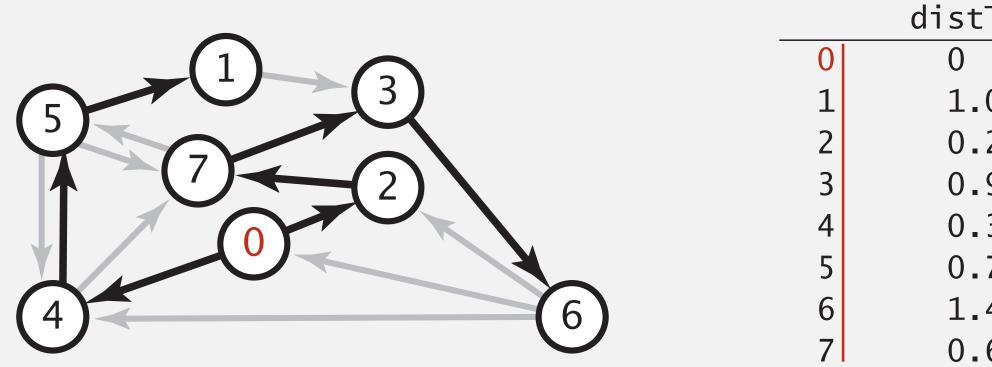
Goal. Find a shortest path from *s* to every vertex.

Observation 1. There exists a shortest path from s to v that is simple.

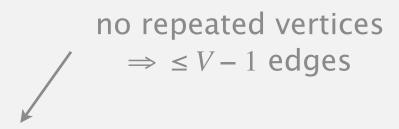
Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v. ullet



shortest-paths tree from 0

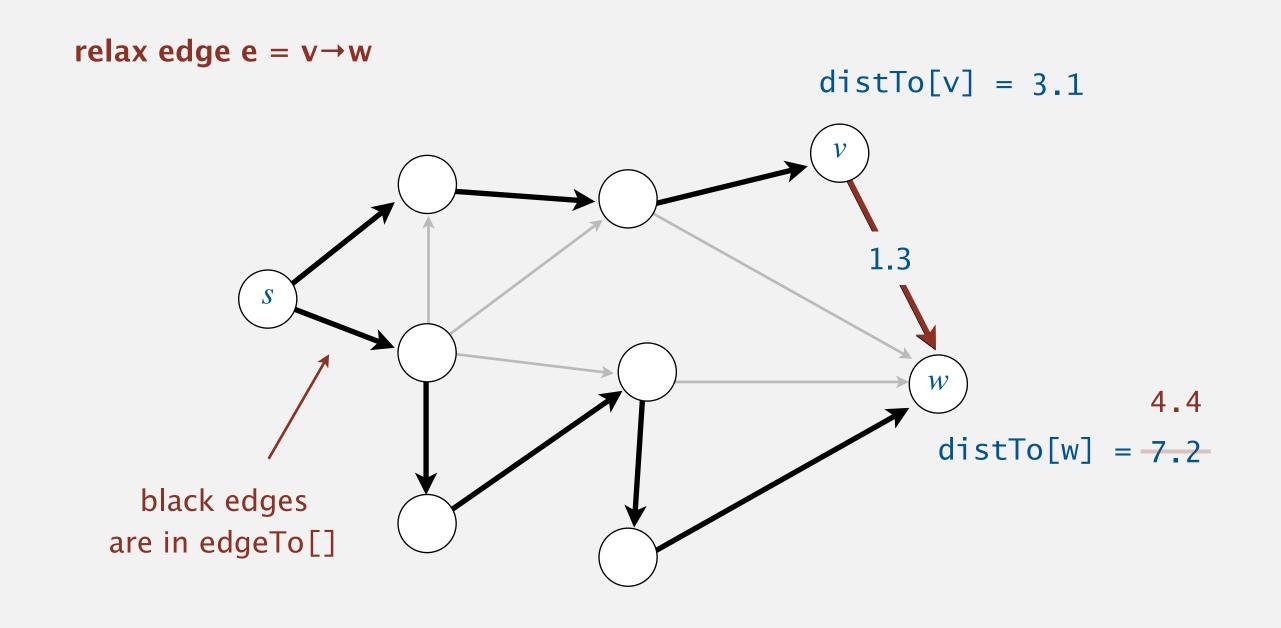


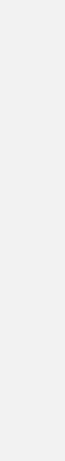
To[]	edgeTo[]		
	null		
05	5->1 0.32		
26	0->2 0.26		
97	7->3 0.37		
38	0->4 0.38		
73	4->5 0.35		
49	3->6 0.52		
60	2->7 0.34		

parent-link representation

Relax edge $e = v \rightarrow w$.

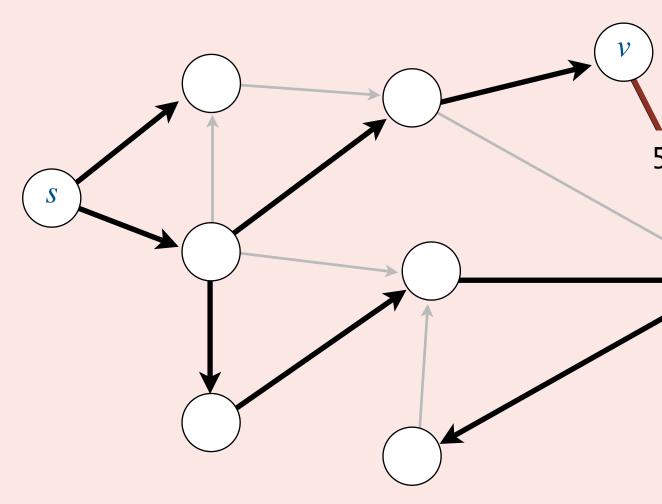
- distTo[v] is length of shortest known path from s to v. •
- distTo[w] is length of shortest known path from s to w. •
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ yields shorter path from s to w, via v, update distTo[w] and edgeTo[w].





What are the values of distTo[v] and distTo[w] after relaxing edge $e = v \rightarrow w$?

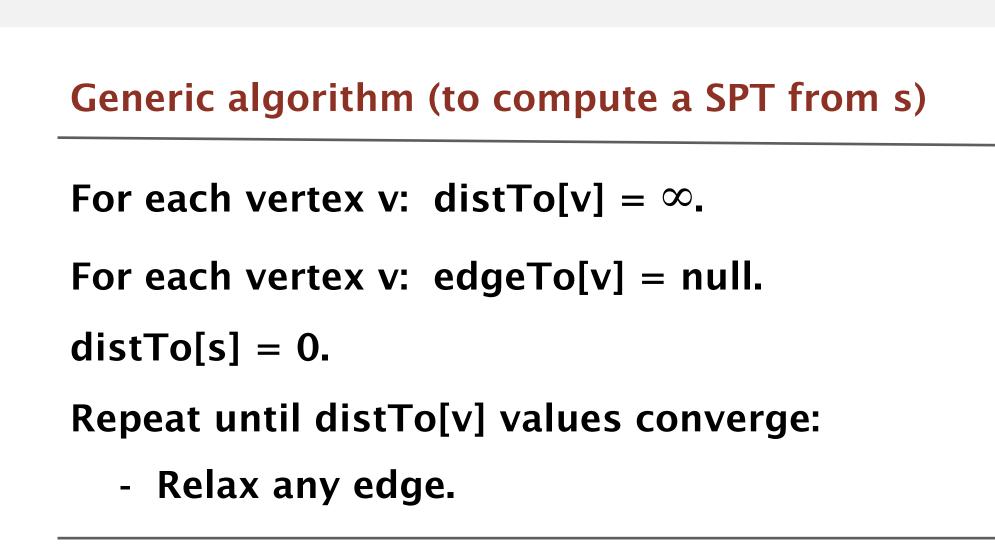
- A. 10.0 and 15.0
- **B.** 10.0 and 17.0
- **C.** 12.0 and 15.0
- **D.** 12.0 and 17.0



= 10.0

5.0

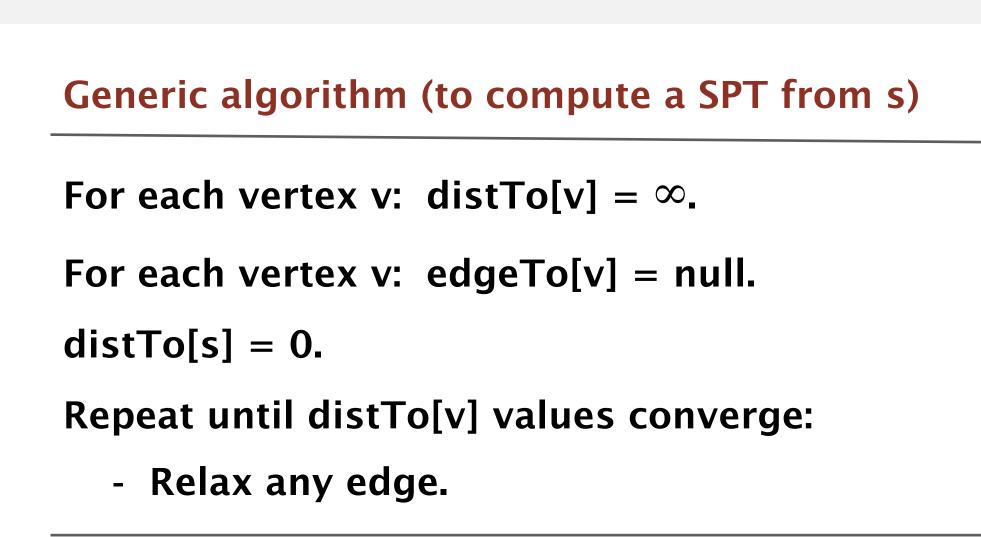
w distTo[w] = 17.0



Key properties. Throughout the generic algorithm,

- distTo[v] is either infinity or the length of a (simple) path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm



Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed to guarantee convergence?
- **Ex 1.** Bellman–Ford algorithm.
- Ex 2. Dijkstra's algorithm.
- Ex 3. Topological sort algorithm.

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

properties

► APIs

Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight)

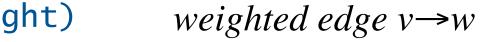
int from()

int to()

double weight()

Relaxing an edge $e = v \rightarrow w$.

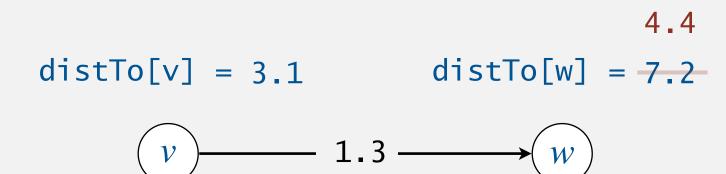
```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```



vertex v

vertex w

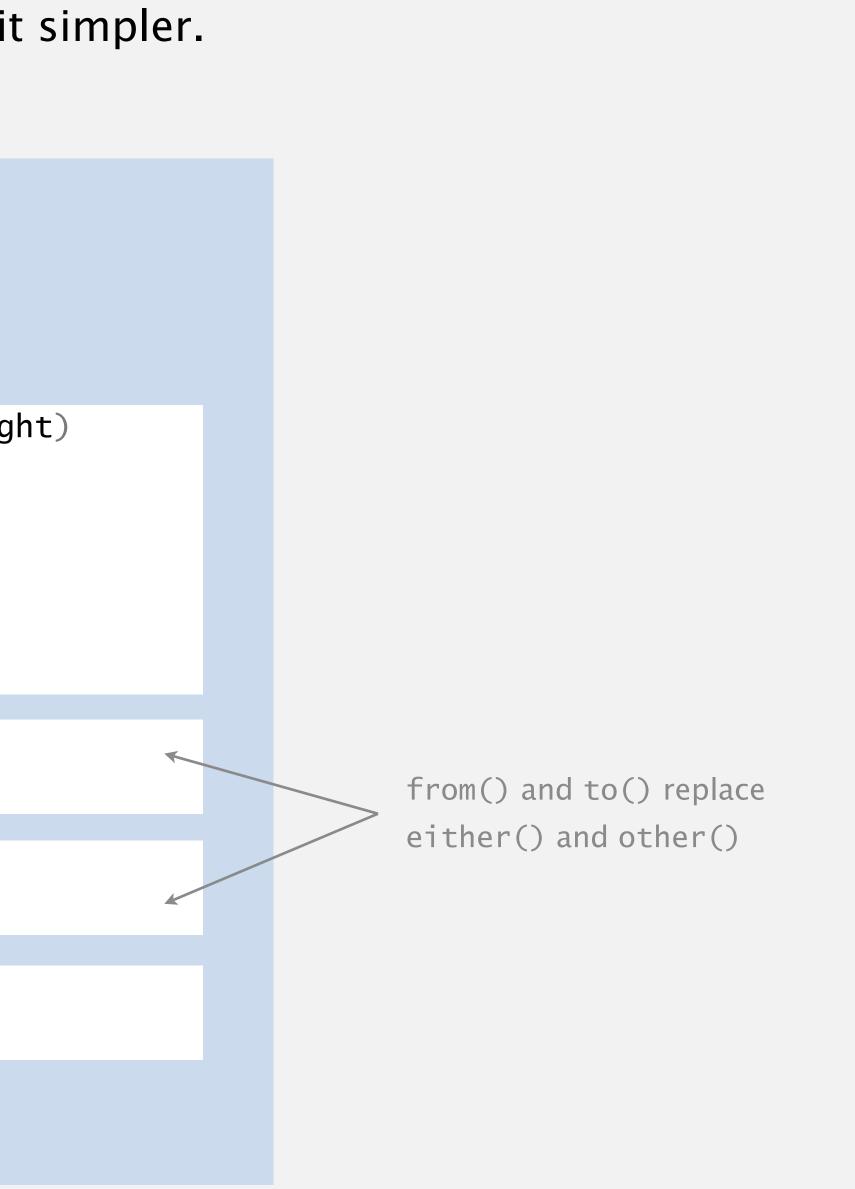
weight of this edge



Weighted directed edge: implementation in Java

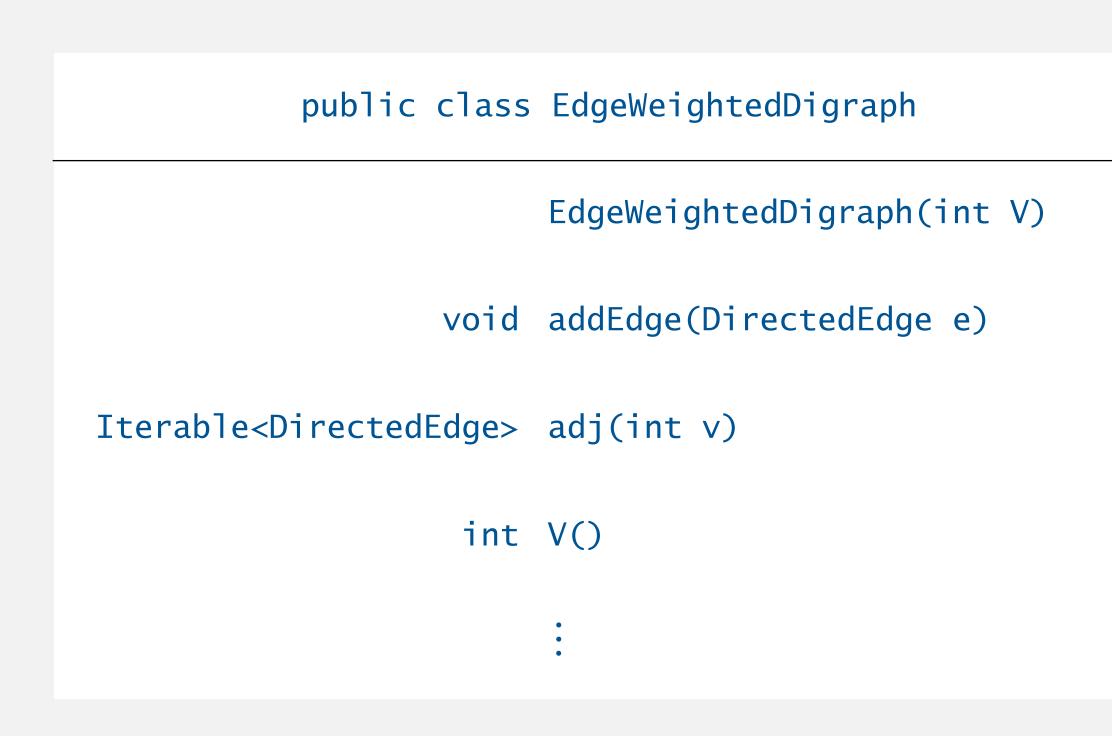
API. Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
   {
     this v = v;
     this.w = w;
     this.weight = weight;
   public int from()
   { return v; }
   public int to()
   { return w; }
   public double weight()
   { return weight; }
```



Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.



edge-weighted digraph with V vertices

add weighted directed edge e

edges incident from v

number of vertices

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
   private final int V;
   private final Bag<DirectedEdge>[] adj;
  public EdgeWeightedDigraph(int V)
    this V = V;
    adj = (Bag<Edge>[]) new Bag[V];
    for (int v = 0; v < V; v++)
       adj[v] = new Bag<>();
   public void addEdge(DirectedEdge e)
     int v = e.from();
     adj[v].add(e);
   public Iterable<DirectedEdge> adj(int v)
   { return adj[v]; }
```

add edge $e = v \rightarrow w$ to only v's adjacency list

Single-source shortest paths API

Goal. Find the shortest path from *s* to every other vertex.

public class SP		
	SP(EdgeWeightedDigraph G, int	
double	distTo(int v)	
Iterable <directededge></directededge>	pathTo(int v)	
boolean	hasPathTo(int v)	

shortest paths from s in digraph G s)

length of shortest path from s to v

shortest path from s to v

is there a path from s to v?

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

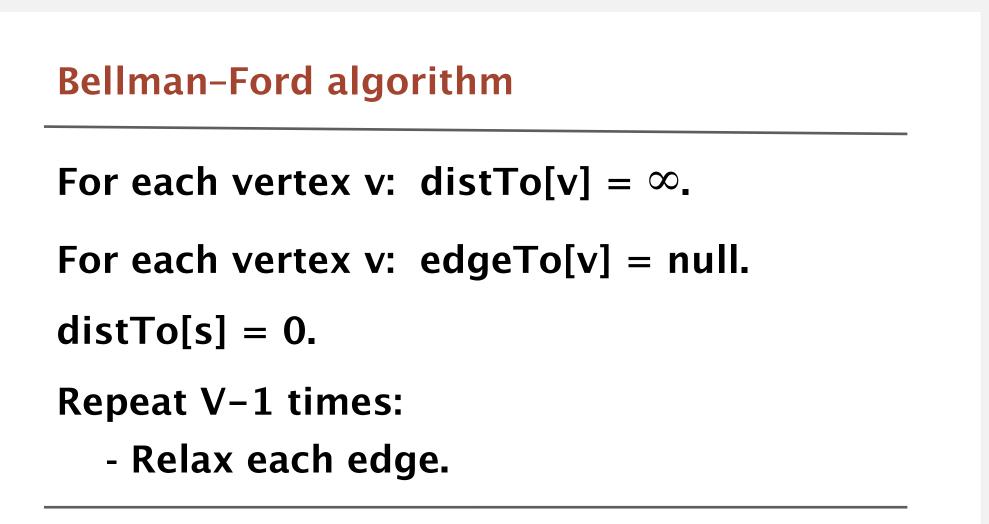
Bellman–Ford algorithm

properties

Dijkstra's algorithm

APIS

Bellman–Ford algorithm



for (int i = 1; i < G.V(); i++) for (int v = 0; v < G.V(); v++) for (DirectedEdge e : G.adj(v)) relax(e);

Running time. Algorithm takes $\Theta(E V)$ time and uses $\Theta(V)$ extra space.

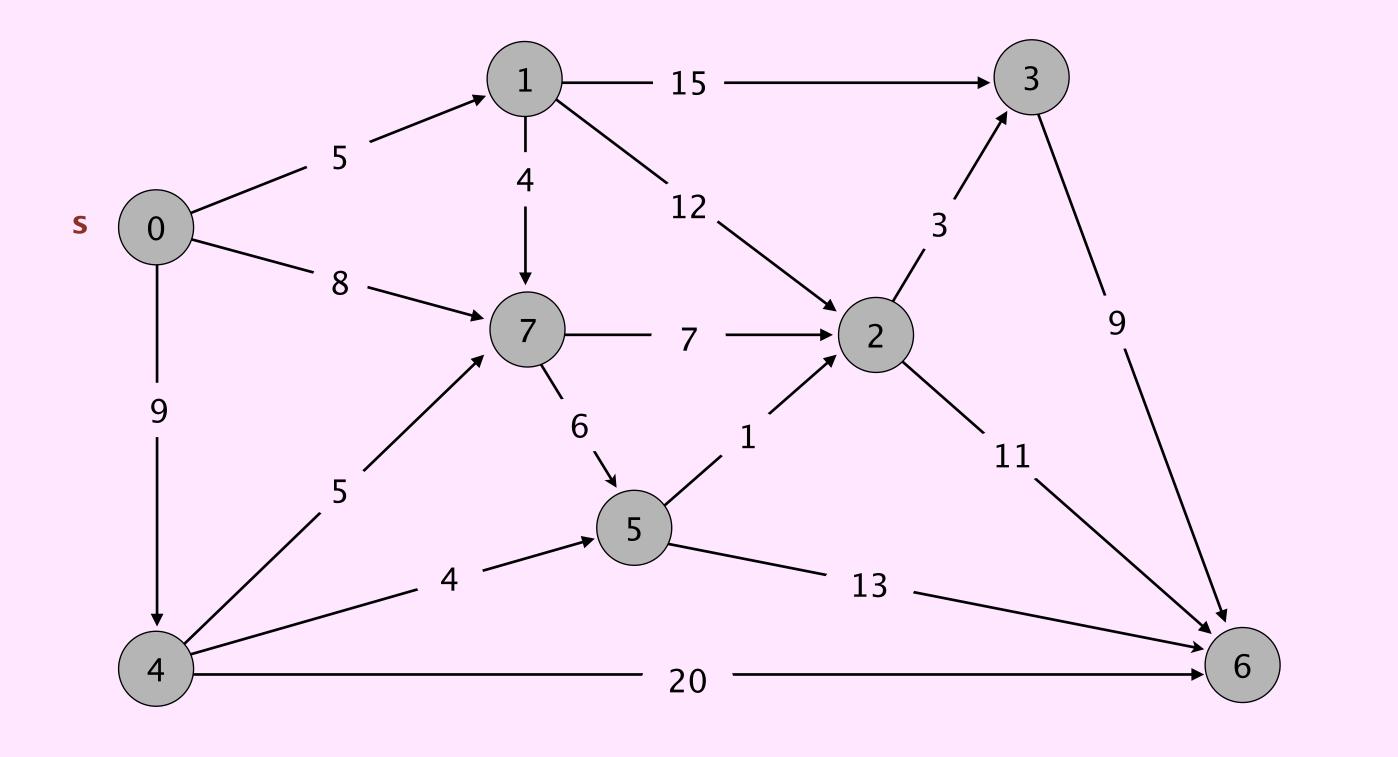
```
private void relax(DirectedEdge e)
  int v = e.from(), w = e.to();
   if (distTo[w] > distTo[v] + e.weight())
      distTo[w] = distTo[v] + e.weight();
       edgeTo[w] = e;
```

pass *i* (relax each edge once)

number of calls to relax() in pass i =outdegree(0) + outdegree(1) + outdegree(2) + ... = E

Bellman–Ford algorithm demo

Repeat V - 1 times: relax all E edges.

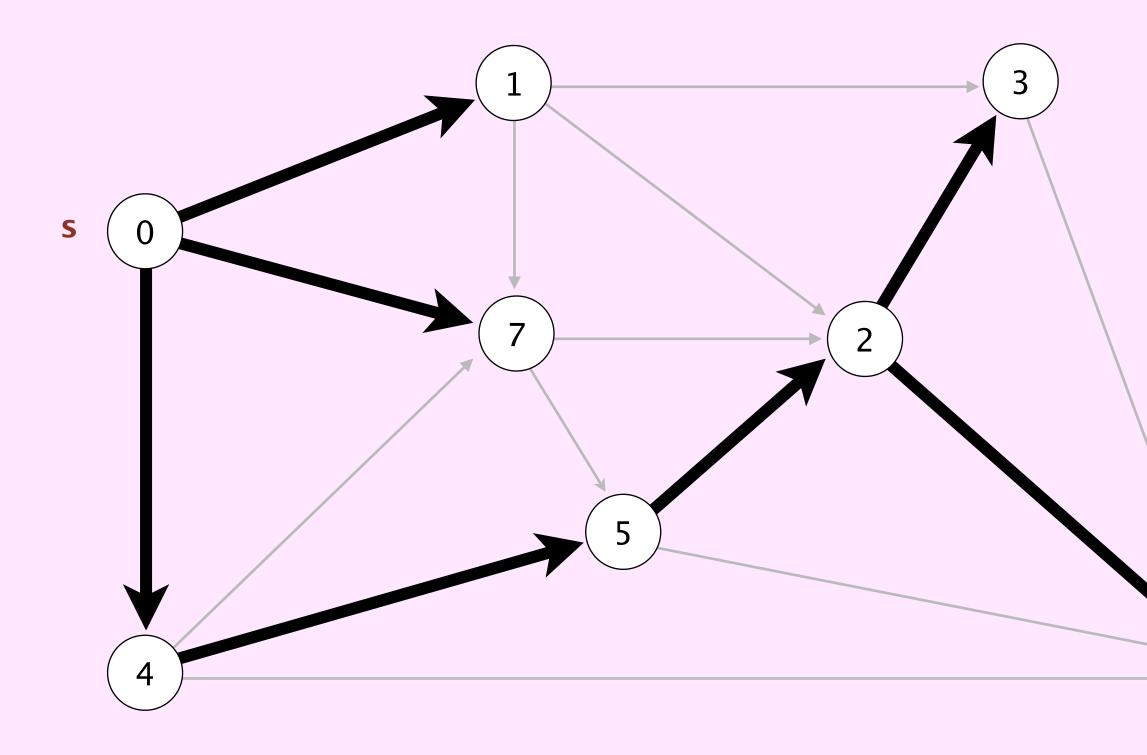


an edge-weighted digraph

0→1 5.0 9.0 0→4 0→7 8.0 1→2 12.0 1→3 15.0 1→7 4.0 3.0 2→3 2→6 11.0 3→6 9.0 4→5 4.0 4→6 20.0 5.0 4→7 5→2 1.0 5→6 13.0 7→5 6.0 7→2 7.0

Bellman–Ford algorithm demo

Repeat V - 1 times: relax all E edges.

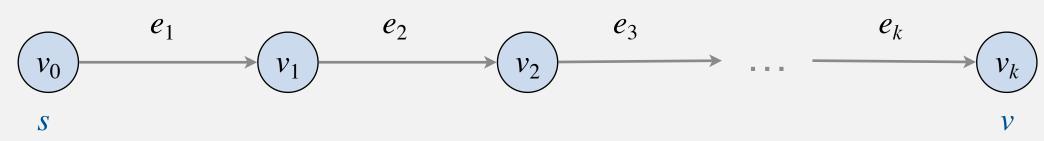


shortest-paths tree from vertex s

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

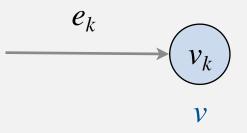
6

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_k = v$ be any path from *s* to *v* containing *k* edges. Then, after pass k, distTo[v_k] \leq weight(e_1) + weight(e_2) + \cdots + weight(e_k).



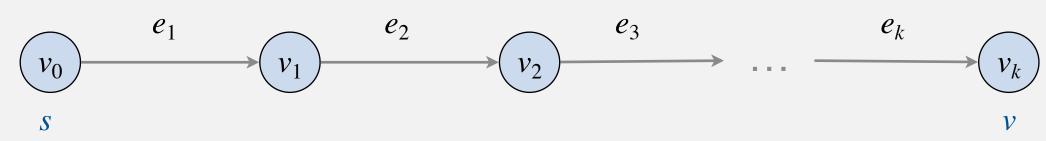
Pf. [by induction on number of passes *i*]

- Base case: initially, $0 = distTo[v_0] \leq 0$.
- Inductive hypothesis: after pass i, distTo[v_i] \leq weight(e_1) + weight(e_2) + \cdots + weight(e_i).
- This inequality continues to hold because distTo[v_i] cannot increase.
- Immediately after relaxing edge e_{i+1} in pass i+1, we have $distTo[v_{i+1}] \leq distTo[v_i] + weight(e_{i+1}) \leftarrow edge relaxation$
- This inequality continues to hold because distTo[v_{i+1}] cannot increase.



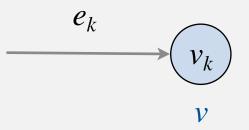
 $\leq weight(e_1) + weight(e_2) + \cdots + weight(e_i) + weight(e_{i+1})$. \leftarrow inductive hypothesis

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow \dots \rightarrow v_k = v$ be any path from s to v containing k edges. Then, after pass k, distTo[v_k] \leq weight(e_1) + weight(e_2) + \cdots + weight(e_k).



Corollary. Bellman–Ford computes shortest path distances. **Pf.** [apply Proposition to a shortest path from s to v]

- There exists a simple shortest path P^* from s to v; it contains $k \leq V 1$ edges.
- The Proposition implies that, after at most V-1 passes, distTo[v] \leq length(P*).
- Since distTo[v] is the length of some path from s to v, distTo[v] = $length(P^*)$.

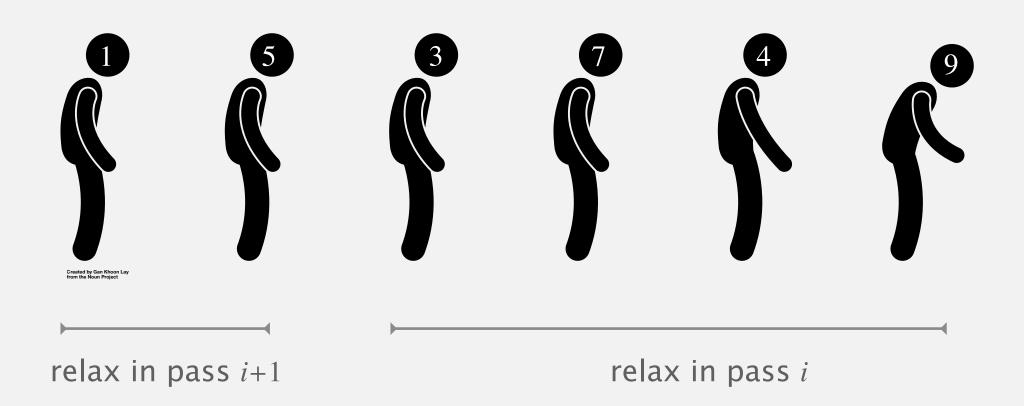


Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, not necessary to relax any edges incident from v in pass i + 1.

Queue-based implementation of Bellman-Ford.

- Perform vertex relaxations. \leftarrow relax vertex v = relax all edges incident from v
- Maintain queue of vertices whose distTo[] values changed since it was last relaxed.



Impact.

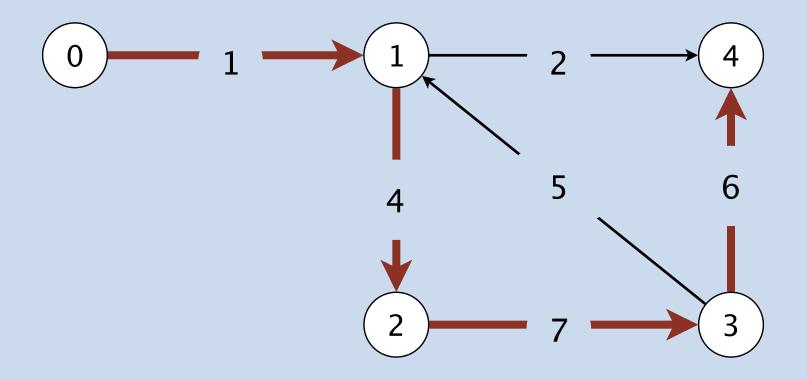
- In the worst case, the running time is still $\Theta(E V)$.
- But much faster in practice on typical inputs.

must ensure each vertex is on queue at most once (or exponential blowup!)

LONGEST PATH

Problem. Given a digraph *G* with positive edge weights and vertex *s*, find a longest simple path from *s* to every other vertex.

Goal. Design algorithm that takes $\Theta(E V)$ time in the worst case.

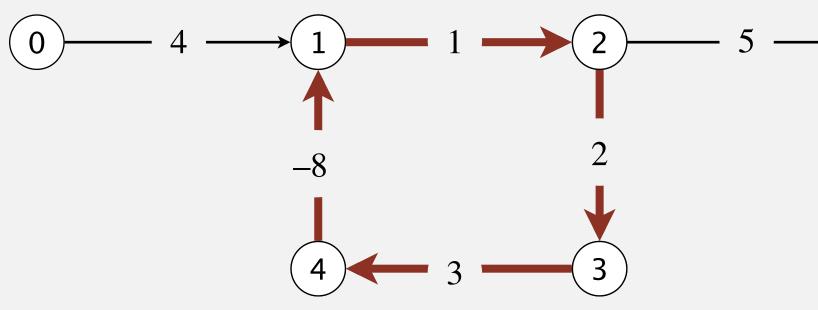


longest simple path from 0 to 4: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

Bellman-Ford algorithm: negative weights

Remark. The Bellman–Ford algorithm works even if some weights are negative, provided there are no negative cycles.

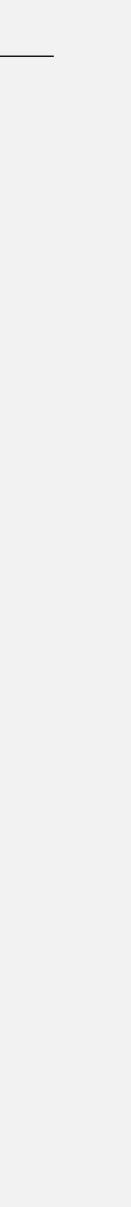
Negative cycle. A directed cycle whose length is negative.



length of negative cycle = 1 + 2 + 3 + -8 = -2

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

 $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow \cdots \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5$



Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

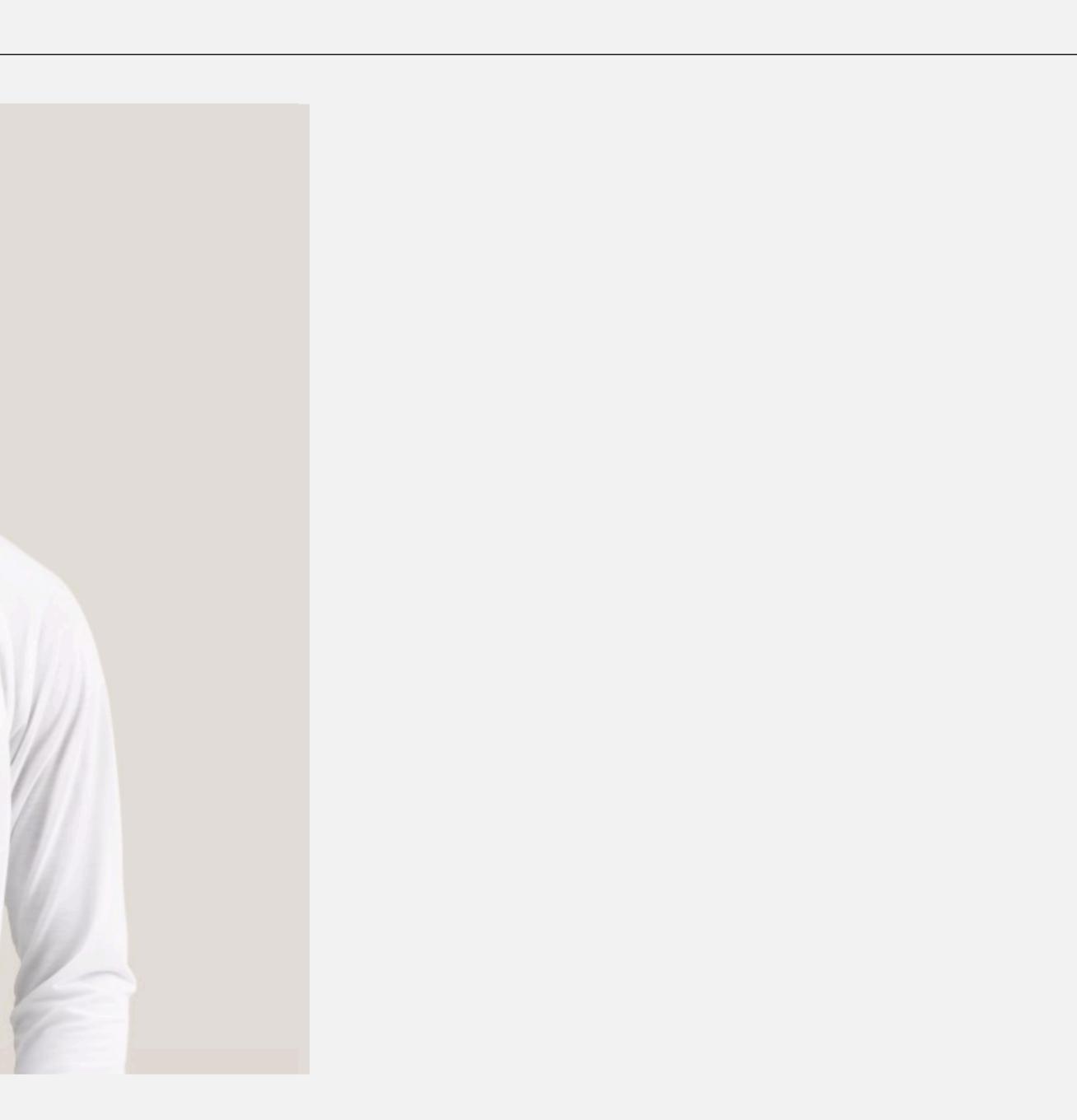
properties

12

AP

Edsger W. Dijkstra: select quote

"Object-oriented programming is an exceptionally bad idea which could only have originated in California." -- Edsger Dijkstra




```
For each vertex v: distTo[v] = \infty.
For each vertex v: edgeTo[v] = null.
```

 $T = \emptyset$.

distTo[s] = 0.

Repeat until all vertices are marked:

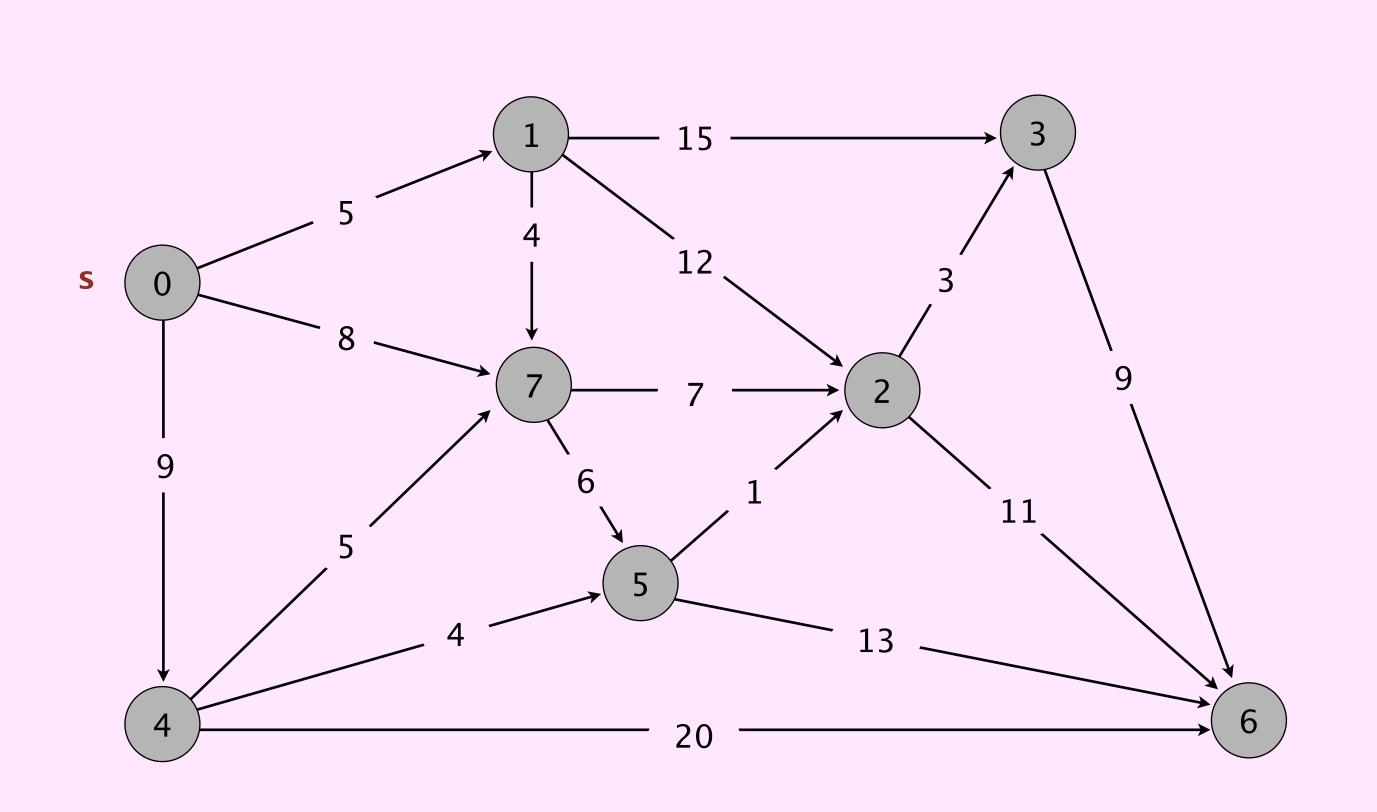
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.
- Relax each edge incident from v.

Key difference with Bellman–Ford. Each edge gets relaxed exactly once!

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.



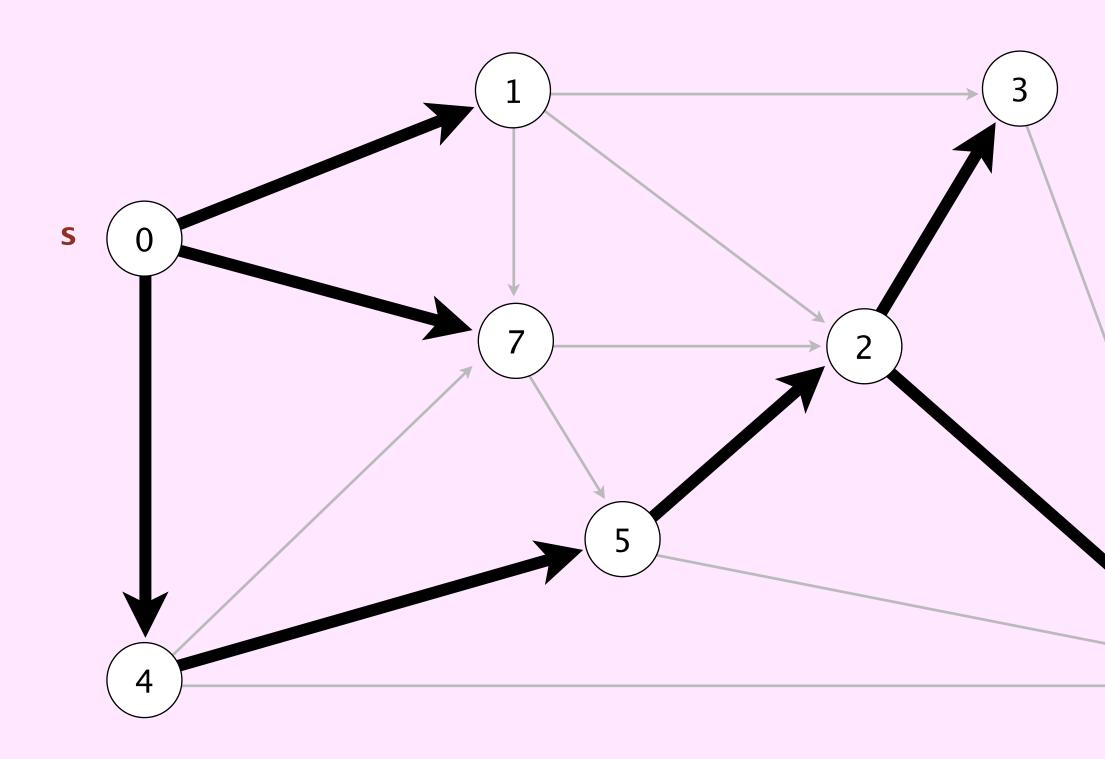
an edge-weighted digraph

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

Dijkstra's algorithm demo

Repeat until all vertices are marked:

- Select unmarked vertex v with the smallest distTo[] value.
- Mark v and relax all edges incident from v.



shortest-paths tree from vertex s

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

6

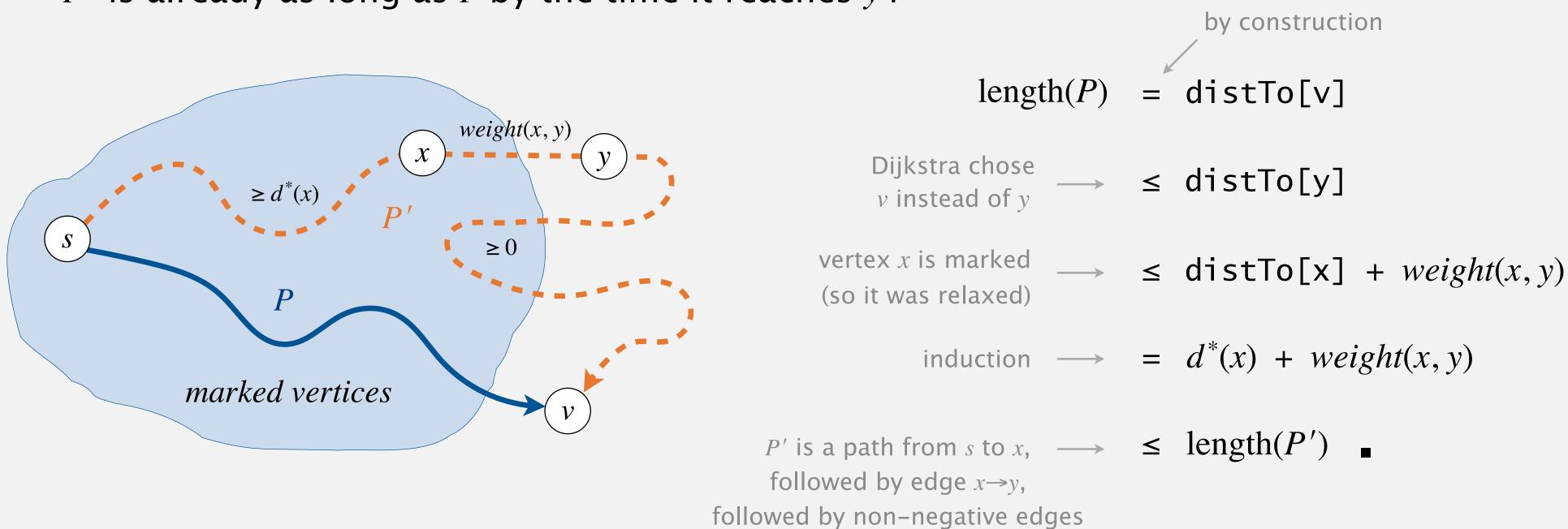
 \sim

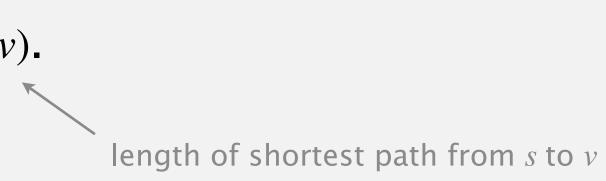
Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = $d^*(v)$.

Pf. [by induction on number of marked vertices]

- Let v be next vertex marked.
- Let P be the path from s to v of length distTo[v].
- Consider any other path P' from s to v.
- Let $x \rightarrow y$ be first edge in P' with x marked and y unmarked.
- P' is already as long as P by the time it reaches y :

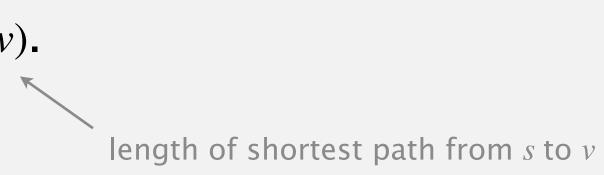




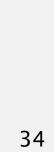
Dijkstra's algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = $d^*(v)$.

Corollary 1. Dijkstra's algorithm computes shortest path distances. **Corollary 2.** Dijkstra's algorithm relaxes vertices in increasing order of distance from *s*.



generalizes both level-order traversal in a tree and breadth-first search in a graph



Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
  private DirectedEdge[] edgeTo;
  private double[] distTo;
   private IndexMinPQ<Double> pq;
  public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V()); ←
      for (int v = 0; v < G_V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty())
      {
         int v = pq.delMin();
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

PQ that supports decreasing the key (stay tuned)

PQ contains the unmarked vertices with finite distTo[] values

relax vertices in increasing order of distance from *s*

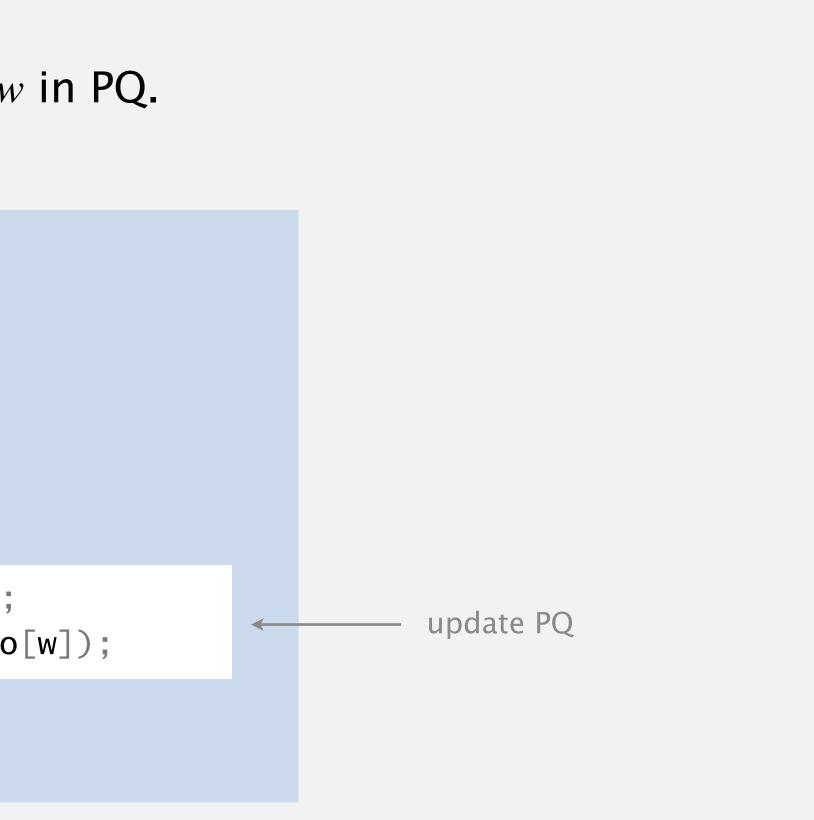
Dijkstra's algorithm: Java implementation

When relaxing an edge, also update PQ:

- Found first path from s to w : add w to PQ.
- Found better path from s to w : decrease key of w in PQ.

```
private void relax(DirectedEdge e)
  int v = e.from(), w = e.to();
  if (distTo[w] > distTo[v] + e.weight())
       distTo[w] = distTo[v] + e.weight();
       edgeTo[w] = e;
      if (!pq.contains(w)) pq.insert(w, distTo[w]);
      else
                           pq.decreaseKey(w, distTo[w]);
```

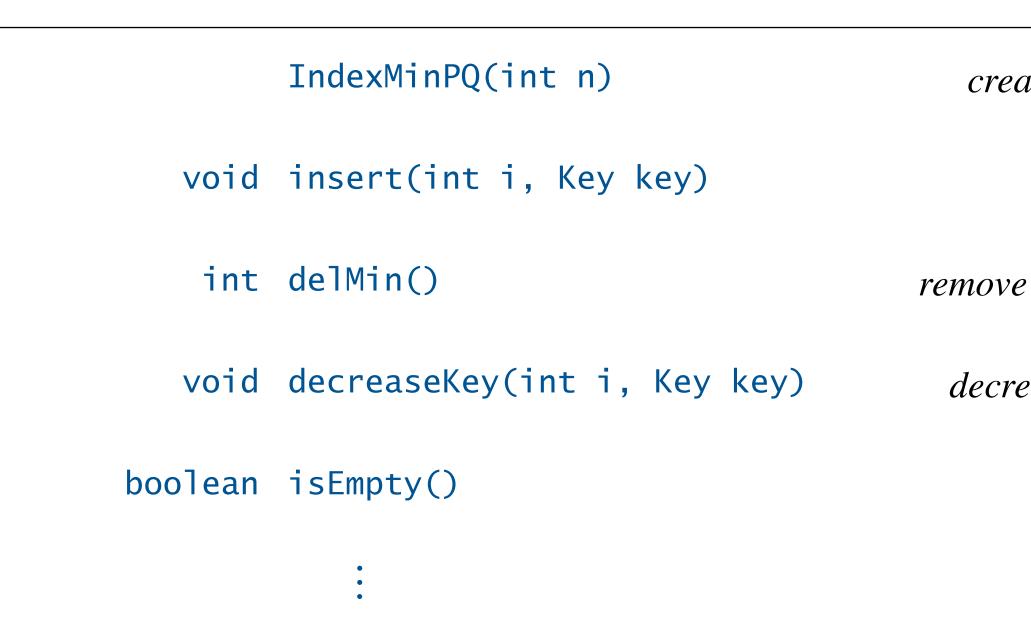
Q. How to implement DECREASE-KEY operation in a priority queue?

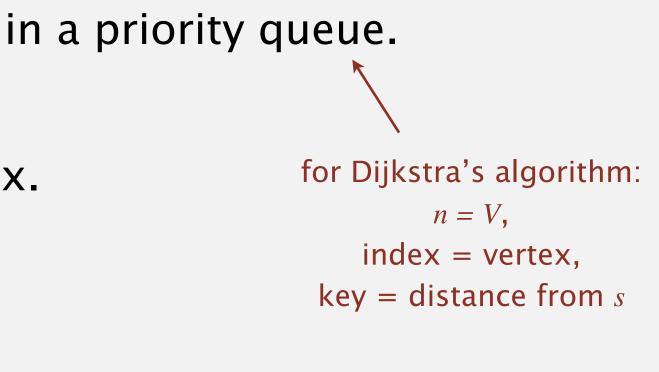


Indexed priority queue (Section 2.4)

Associate an index between 0 and n-1 with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.





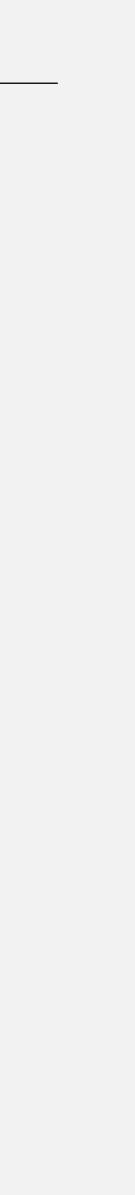
create PQ with indices $0, 1, \ldots, n-1$

associate key with index i

remove min key and return associated index

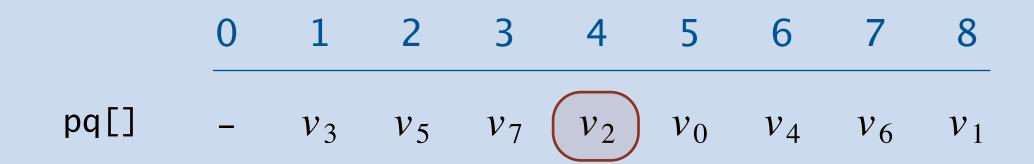
decrease the key associated with index i

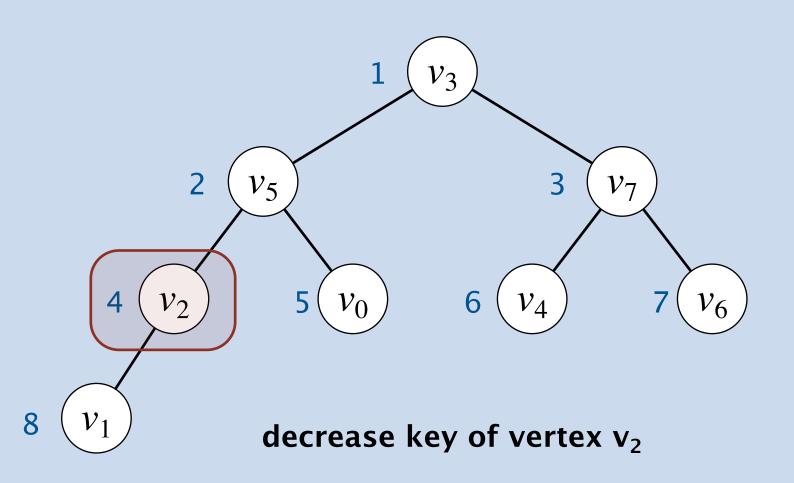
is the priority queue empty?



DECREASE-KEY IN A BINARY HEAP

Goal. Implement DECREASE-KEY operation in a binary heap.





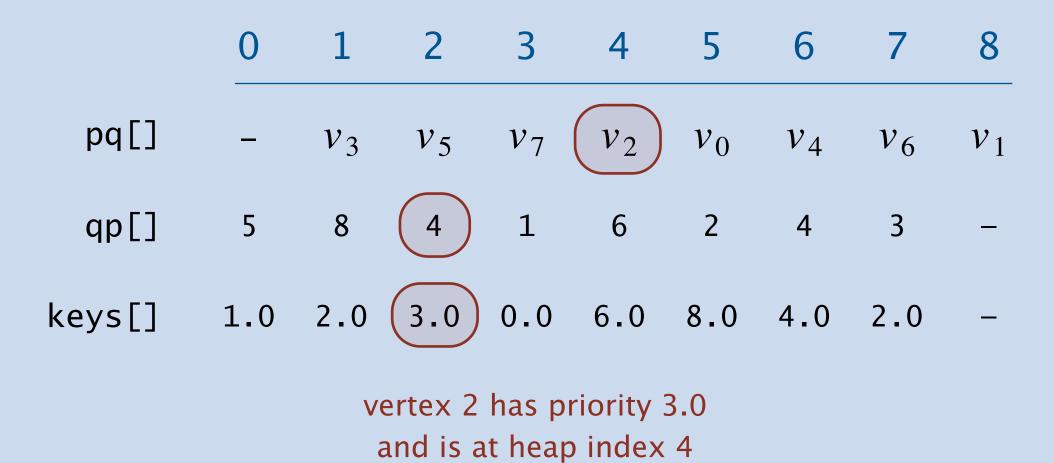
DECREASE-KEY IN A BINARY HEAP

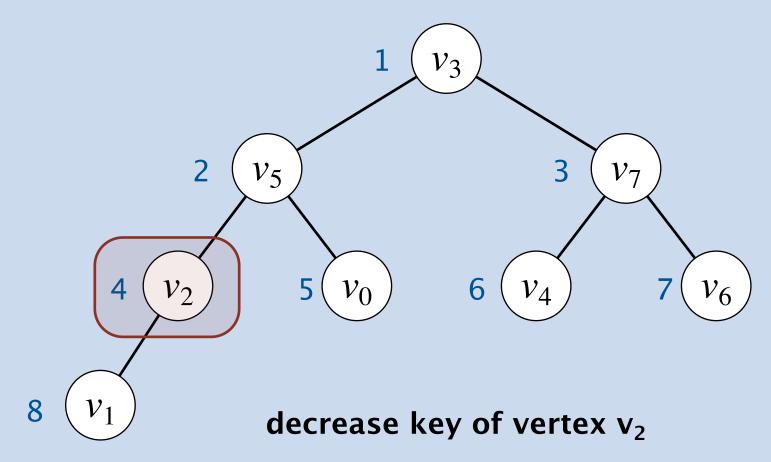
Goal. Implement DECREASE-KEY operation in a binary heap.

Solution.

- Find vertex in heap. How?
- Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array qp[] that maps from the vertex to the binary heap node index.





Dijkstra's algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, $\leq E$ DECREASE-KEY.

PQ implementation	INSERT	Delete-Min	Decrease-Key	total
unordered array	1	V	1	V^2
binary heap	log V	log V	log V	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1	$\log V^{\dagger}$	1	$E + V \log V$

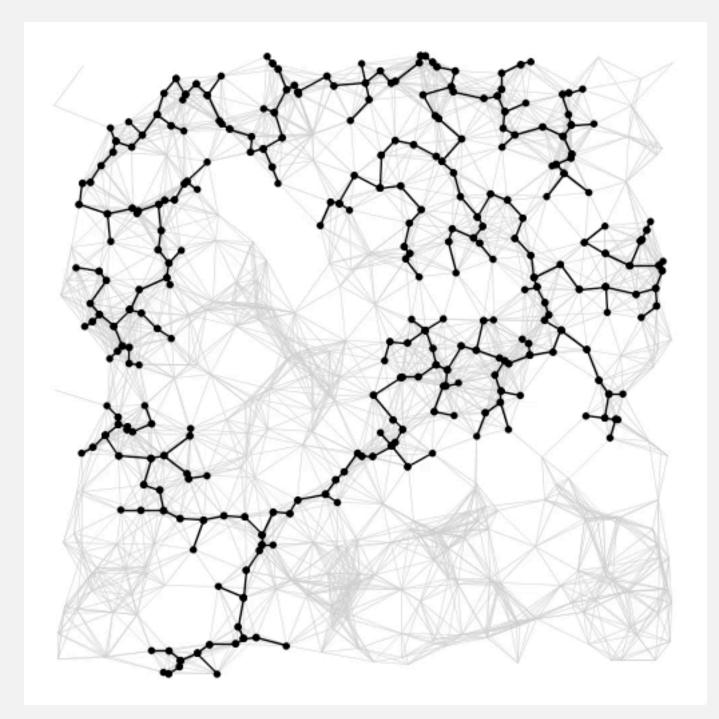
Bottom line.

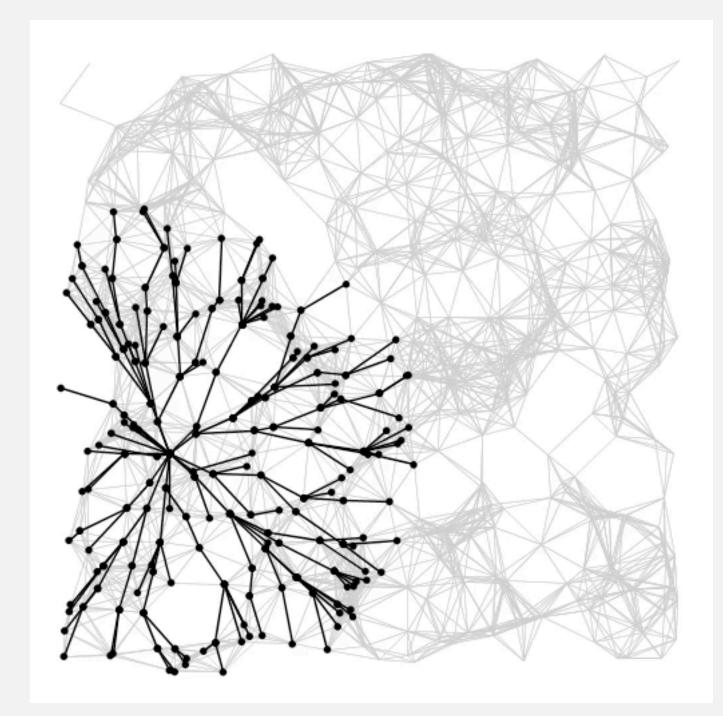
- Array implementation optimal for complete digraphs.
- Binary heap much faster for sparse digraphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

† amortized

Observation. Prim and Dijkstra are essentially the same algorithm.

- Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).
- Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).





Prim's algorithm

Dijkstra's algorithm

Variations on a theme: vertex relaxations.

- Bellman-Ford: relax all vertices; repeat V 1 times.
- Dijkstra: relax vertices in order of distance from *s*.
- Topological sort: relax vertices in topological order. ←

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	E V		✓
Dijkstra	$E \log V$		✓
topological sort	E		

S. S. see Secti

see Section 4.4 and next lecture

† no negative cycles

Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.

- Negative weights (but no "negative cycles"): Bellman-Ford.
- Non-negative weights: Dijkstra.
- DAG: topological sort.

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	E V		
Dijkstra	$E \log V$		✓
topological sort	E		

ed digraph. nan-Ford.

† no negative cycles

© Copyright 2023 Robert Sedgewick and Kevin Wayne