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Shortest path in an edge-weighted digraph

Given an edge-weighted digraph, find a shortest path from one vertex to another vertex.

edge-weighted digraph

4->5 0.35

5->4 0.35

4->7 0.37 o,

5->7 0.28 <

/->5 0.28

5->1 0.32 0.52
0->4 0.38 N

0->2 0.26 S

/->3 0.39

1->3 0.29 23

2->7 0.34 @){ -
6->2 0.40

3->0 0.52

6->0 0.58

6->4 0.93 shortest path from O to 6 length of path = 1.51

0—=2—-7—-3—6 (0.26 + 0.34 + 0.39 + 0.52)



Shortest path applications

 PERT/CPM.
* Map routing.

(‘ Seam carving. )<— see Assignment 6

 Texture mapping.

« Robot navigation.

« Typesetting in TEX.

» Currency exchange. e en e ora ik e ot
* Urban traffic planning.

* Optimal pipelining of VLSI chip.

* Telemarketer operator scheduling.

* Routing of telecommunications messages.

* Network routing protocols (OSPF, BGP, RIP).

« Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.


http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

« Source-destination: from one vertex to another vertex.

[- Single source: from one vertex to every vertex. )

* Single destination: from every vertex to one vertex.

« All pairs: between all pairs of vertices.

Restrictions on edge weights?
[- Non-negative weights. )

* Euclidean weights.

* Arbitrary weights.

Directed cycles?
* Prohibit.

(- Allow. )

Simplifying assumption. Each vertex is reachable from s.




Shortest paths: quiz 1

Which variant in car GPS? Hint: drivers make wrong turns occasionally.

A. Source-destination: from one vertex to another vertex.
B. Single source: from one vertex to every vertex.
C. Single destination: from every vertex to one vertex.

D. All pairs: between all pairs of vertices.
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Data structures for single-source shortest paths

Goal. Find a shortest path from s to every vertex.

Observation 1. There exists a shortest path from s to v that is simple.

Observation 2. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

« distTo[v] is length of a shortest path from s to v.

« edgeTo[v] is last edge on a shortest path from s to v.

distTol[] edgeTo[]

0 0 0 null

e 9 1 1.05 5->1
2 0.26 0->2

a e 3 0.97 7-53

Q 4 0.38 0->4

5 0.73 4->5

e @ 6 1.49 3-56
/ 0.60 2->7

shortest-paths tree from O parent-link representation



Edge relaxation

Relax edge e = v—w.
« distTo[v] is length of shortest known path from s to v.

« distTo[w] is length of shortest known path from s to w.

* edgeTo[w] is last edge on shortest known path from s to w.

e If e=v—w yields shorter path from s to w, via v, update distTo[w] and edgeTo[w].

relax edge e = vow
distTol[v] = 3.1

K

1.3

/ () 4
distTo[w] =-7.2
black edges
are in edgeTo[ ]



Shortest paths: quiz 2

What are the values of distTo[v] and distTo[w] after relaxing edge ¢ =v—w ?

A. 10.0 and 15.0
B. 10.0and 17.0
C. 12.0 and 15.0

D. 12.0and 17.0

distTo[v] = 10.0

O R
LS8

O

10



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ©.
For each vertex v: edgeTo|[v] = null.
distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Key properties. Throughout the generic algorithm,

« distTo[v] is either infinity or the length of a (simple) path from s to v.

e distTo[v] does not increase.




Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ©.
For each vertex v: edgeTo|[v] = null.
distTo[s] = 0.

Repeat until distTo[v] values converge:

- Relax any edge.

Efficient implementations.
 Which edge to relax next?

 How many edge relaxations needed to guarantee convergence?

Ex 1. Bellman-Ford algorithm.

Ex 2. Dijkstra’s algorithm.

12
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Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, 1nt w, double weight)

int from()

int to()

double weight()

Relaxing an edge ¢ = v—w.

private void relax(DirectedEdge e)

{

int v = e.from(), w = e.to();
1f (distTo|[w]

{

distTo[w]
edgeTo[w]

>

distTo[v] + e.weight())

distTo[v] + e.weight();
e,

vertex v

vertex w

weighted edge v—w

weight of this edge

distTo[v] = 3.1

0

1.3

distTo[w]

O

4.4
7~

14



Weighted directed edge: implementation in Java

APl. Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{

private final int v, w;
private final double weight;

public DirectedEdge(int v, 1nt w, double weight)

this.v = v;
this.w = w;

this.weight = weight;

public 1nt from()
{ return v; }

public 1nt to()
{ return w; }

public double weight()
{ return weight; }

15



Edge-weighted digraph API

API.

Same as EdgeWeightedGraph except with DirectedEdge objects.

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges incident from v

int VO number of vertices

16



Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

public class EdgeWeightedDigraph
{

private final int V;
private final Bag<DirectedEdge>|| adj;

public EdgeWeightedDigraph(int V)
{
this.V = V;
adj = (Bag<Edge>[]) new Bagl[V];
for (int v =0; v < V; v++)
adjlv] = new Bag<>();
¥

public void addEdge(DirectedEdge e)
{

int v = e.from();
adj[v].add(e);
}

public Iterable<DirectedEdge> adj(int v)
{ return adjlv]; }



Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

SP(EdgeWeightedDigraph G, int s)
double distTo(int v)
Iterable <DirectedEdge> pathTo(int v)

boolean hasPathTo(int v)

shortest paths from s in digraph G
length of shortest path from s to v
shortest path from s to v

is there a path from s tov?

18
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Bellman-Ford algorithm

] private void DirectedEdge e

Bellman-Ford algorithm
int v e w = e
For each vertex v: distTo[v] = oo. if (distTo[w] > distTolv e
For each vertex v: edgeTo[v] = null. 43 stTolw] = distTolv .
distTo[s] = O. edgeTolw] = e
Repeat V-1 times:
- Relax each edge.
for (Aint1=1; 1 < G.VO; 1++)
for (int v = 0; v < G.VO; v++)
for (DirectedEdge e : G.adj(v)) < pass i (relax each edge once)
relax(e);

number of calls to relax() in passi =
/ outdegree(0) + outdegree(l) + outdegree(2) + ... = E

Running time. Algorithm takes ©(E V) time and uses ©(V) extra space.

20



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

15

20

an edge-weighted digraph

12.
15.

11.

20.

13.

U1
©O O O O O O O O O O O O O o o o

21



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

@

(7

shortest-paths tree from vertex s

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

22



Bellman-Ford algorithm: correctness proof

Proposition. Lets=vy—v; — ... = v, =v be any path from s to v containing k edges.

Then, after pass k, distTo[vi] < weight(e,) + weight(e,) + -+ + weight(e;).

Pf.
« Base case: initially, 0 = distTo[v,] < O.
* Inductive hypothesis: after pass i, distTo[v;] =< weight(e,) + weight(e,) + -+ + weight(e;).
« This inequality continues to hold because distTo[v;] cannot increase.
« Immediately after relaxing edge e,,; in pass i+1, we have
distTol[v;,;] =< distTolv;] + weight(e;,)
< weight(e,) + weight(e,) + -+ + weight(e;) + weight(e;, ).

e This inequality continues to hold because distTo[v;,;] cannot increase. =



Bellman-Ford algorithm: correctness proof

Proposition. Lets=vy—v; — ... = v, =v be any path from s to v containing k edges.

Then, after pass k, distTo[vi] < weight(e,) + weight(e,) + -+ + weight(e;).

Corollary. Bellman-Ford computes shortest path distances.

Pf.
 There exists a simple shortest path P*from s to v; it contains £k < V-1 edges.
 The Proposition implies that, after at most V-1 passes, distTo[v] < length(P*).

e Since distTo[v] is the length of some path from s to v, distTo[v] = length(P*).

24



Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i,

not necessary to relax any edges incident from v in pass i + 1.

Queue-based implementation of Bellman-Ford.
* Perform vertex relaxations.

* Maintain queue of vertices whose distTo[] values changed since it was last relaxed.

N\

L € § § A

relax vertex v

relax in pass i+1 relax in pass i

Impact.
* |In the worst case, the running time is still ®(E V).

 But much faster in practice on typical inputs.

25



LONGEST PATH

Problem. Given a digraph G with positive edge weights and vertex s,

find a longest simple path from s to every other vertex.

Goal. Design algorithm that takes ®(E V) time in the worst case.

(s (e

i 5 6

B

longest simple path from 0 to 4: 0—-1-+2—-3-4

26



Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some weights are negative,
provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.
(0 — 4 —?— 1 —)ﬁ)— s —(s)

g 2

e &

length of negative cycle=1+2 +3 + -8 = -2

Negative cycles and shortest paths. Length of path can be made arbitrarily negative
by using negative cycle.

0—>1—-2—->3->4—->]—> - >2->3>4->]->2->5

27
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Edsger W. Dijkstra: select quote

uobject..oriented Progy .
is an exceptionally paq i;ng

which could only pha, -3
) originated in CalifOrnia i

) -~ Edsger Dijkstp,

29



Dijkstra's algorithm

Dijkstra's algorithm

For each vertex v: distTo|[v] = oo.

For each vertex v: edgeTo[v] = null.

T=0.

distTo[s] = O.

Repeat until all vertices are marked:
- Select unmarked vertex v with the smallest distTo[] value.
- Mark v.

- Relax each edge incident from v.

Key difference with Bellman-Ford. Each edge gets relaxed exactly once!

30



Dijkstra’s algorithm demo

Repeat until all vertices are marked:
« Select unmarked vertex v with the smallest distTo[] value.

« Mark v and relax all edges incident from v.

15 >

20 >

an edge-weighted digraph

O O O O O O O O O O O O O o o o

31



Dijkstra’s algorithm demo

Repeat until all vertices are marked:

 Select unmarked vertex v with the smallest distTo[] value.

« Mark v and relax all edges incident from v.

@

(7

shortest-paths tree from vertex s

(2

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

32



Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = d7(v).

Pf.
« Let v be next vertex marked.
« Let P be the path from s to v of length distTo[Vv].
« Consider any other path P' from s to v.
« Let x—y be first edge in P’ with x marked and y unmarked.

 P'is already as long as P by the time it reaches y:

length(P)

distTo[Vv]

ght(x,y)
@wezgtxy@

IA

distToly]

IA

distTo[x] + weight(x,y)

d*(x) + weight(x,y)

marked vertices

IA

length(P') .




Dijkstra’s algorithm: correctness proof

Invariant. For each marked vertex v: distTo[v] = d7(v).

Corollary 1. Dijkstra’s algorithm computes shortest path distances.

Corollary 2. Dijkstra’s algorithm relaxes vertices in increasing order of distance from s.

34



Dijkstra’s algorithm: Java implementation

public class DijkstraSP

{

private DirectedEdge| ] edgeTo;
private double[] distTo;

private IndexMinPQ<Double> pq; =

public DijkstraSP(EdgeWeightedDigraph G, int s)

{

edgeTo = new DirectedEdge[G.V() |;
distTo = new double[G.V()];

pq = new IndexMinPQ<Double>(G.V());

for (int v

distTo[s]| = 0.0;

pq.1nsert(s, 0.0);
while (!pqg.isEmpty())

{

int v = pq.delMin();

for (DirectedEdge e :

relax(e);

=0; v < G.VO; v++)
distTo|/v] = Double.POSITIVE INFINITY;

G.adj(v))

<

PQ that supports
decreasing the key
(stay tuned)

PQ contains the
unmarked vertices
with finite distTo[] values

relax vertices in increasing order
of distance from s

35



Dijkstra’s algorithm: Java implementation

When relaxing an edge, also update PQ:
 Found first path from s to w: add w to PQ.

 Found better path from s to w: decrease key of w in PQ.

private void relax(DirectedEdge e)

{
int v = e.from(), w = e.to();
1f (distTo[w] > distTolv] + e.weight())
{
distTo[w] = distTolv] + e.weight();
edgeTolw]| = e;
1f (!pg.contains(w)) pg.insert(w, distTo[w]);
else pq.decreaseKey(w, distTo[w]);
}
}

Q. How to implement DECREASE-KEY operation in a priority queue?

36



Indexed priority queue (Section 2.4)

Associate an index between 0 and n - 1 with each key in a priority queue.

* |Insert a key associated with a given index. \

* Delete a minimum key and return associated index. for Dijkstra’s algorithm:
n=1y,

* Decrease the key associated with a given index. index = vertex,

key = distance from s

public class IndexM1nPQ<Key extends Comparable<Key>>

IndexM1nPQ(int n) create PQ with indices 0,1, ..., n—1
void 1insert(int 1, Key key) associate key with index i
int delMin() remove min key and return associated index
void decreaseKey(int 1, Key key) decrease the key associated with index i

boolean 1isEmpty() is the priority queue empty?

37



DECREASE-KEY IN A BINARY HEAP

Goal. Implement DECREASE-KEY operation in a binary heap.

pCI[] — V3 Vs V7 Vo Vy Ve V1 2

[4 Q B
8 @ decrease key of vertex v,

38



DECREASE-KEY IN A BINARY HEAP

Goal. Implement DECREASE-KEY operation in a binary heap.

Solution.
* Find vertex in heap. How?

* Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an inverse array gp[] that maps from the vertex

to the binary heap node index.

pCI[] — V3 Vs V7 Vo Vy Ve V1 2

ap[] 5 8@1 6 2 4 3 - [4@] :

keys|[] 1.0 2.0 0.0 6.0 8.0 4.0 2.0 —

vertex 2 has priority 3.0
and is at heap index 4

decrease key of vertex v,

39



Dijkstra’s algorithm: which priority queue?

Number of PQ operations: V INSERT, V DELETE-MIN, < E DECREASE-KEY.

PQ implementation INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap log V log V log V ElogV
d-way heap log, V dlog,V log, V Elogg,vV
Fibonacci heap 17 log V"’ 17 E+VlogV

T amortized

Bottom line.
* Array implementation optimal for complete digraphs.
* Binary heap much faster for sparse digraphs.
* 4-way heap worth the trouble in performance-critical situations.

* Fibonacci heap best in theory, but not worth implementing.

40



Priority-first search

Observation. Prim and Dijkstra are essentially the same algorithm.
* Prim: Choose next vertex that is closest to any vertex in the tree (via an undirected edge).

* Dijkstra: Choose next vertex that is closest to the source vertex (via a directed path).

Prim’s algorithm Dijkstra’s algorithm

41



Algorithms for shortest paths

Variations on a theme: vertex relaxations.
« Bellman-Ford: relax all vertices; repeat V-1 times.

« Dijkstra: relax vertices in order of distance from s.

see Section 4.4

 Topological sort: relax vertices in topological order. -«

worst-case
running time

hegative weights t

Bellman-Ford EV v

Dijkstra ElogV

and next lecture

directed
cycles

T no negative cycles

42



Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph.
* Negative weights (but no “negative cycles”): Bellman-Ford.
 Non-negative weights: Dijkstra.

 DAG: topological sort.

worst-case : : directed
. . hegative weights t
running time cycles

Bellman-Ford EV v v

Dijkstra ElogV v

T no negative cycles

43
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