A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

> introduction

> cut property

> edge-weighted graph API
» Kruskal’s algorithm

> Prim’s algorithm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

» intfroduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A motivating example

Install minimum number of paving stones to connect all of the houses.

http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

graph G
spanning tree T

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

not connected

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

hot acyclic

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
* A tree: connected and acyclic.

« Spanning: includes all of the vertices.

hot spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

not necessarily
proportional to “length”

e

/% edge weight
SZEES
SN

16 10

edge-weighted graph G

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

/CN edge weight

minimum spanning tree T

(weight=50=4+6+5+8+9+ 11 + 7)

Brute force. Try all spanning trees?

Minimum spanning trees: quiz |

Let 7 be any spanning tree of a connected graph G with V vertices.

Which of the following properties must hold?

A. Removing any edge from 7 disconnects it.
B. Adding any edge to T creates a cycle.
C. T contains exactly V-1 edges.

D. All of the above.

spanning tree T of graph G

10

Network design

Network. Vertex = network component; edge = potential connection; edge weight = cost.

11

http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Hierarchical clustering

Microarray graph. Vertex = cancer tissue; edge = all pairs; edge weight = dissimilarity.

A L T e

gene 1
genen
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

Reference: Botstein & Brown group . gene expressed

B gene not expressed

12

More MST applications

MST dithering

slime mold vs. rajl network *

*

y

phylogeny tree reconstruction

Gmb1

A.Br.011/009 | SenzColz j
190 A.Br.WNA

Carbosap A0174 A0193

141
30
CVI-260187 C< /‘ e /.USA6153
0

Ba4599 2-1

UR- 1.\& \99 10
A.Br.005/006 33 & A.Br.008/011
T5|ankovsk||

IEMVT 89 EVl-un2 ”"2
\ Ba 3154
31
czcs
. Ba 3166

>
i
C.Br.A1055
a0ss OQ— " ‘% s
e AVO/AZa}/ T
B.Br.001/002 / l

B.Br.KrugerB

130-" Bal03

129
%6 A02/A

A.Br.lS\ —‘ CVl-unl

%, H9401 3Qonz/m-NL
20 111199
svair O 59 CDC 684 ; CVI-131959-5
571 Australia 94 os s ho CVI-132064-1, CVI-13185
A0442 503 '1 CVI-127491-V08551
g () Sterne
/ o /L Vollurs ‘CV' 23932 CVI-188678-1) cw 56430 CVI-128268
Kruger B 24 A0488
()/ do 90806 A.Br.001/002
00-82 A.Br.Vollum
CNEVA-9066
8903G 52G
A0465
B.Br.CNEVA A.Br.Aust94

13

https://www.youtube.com/watch?v=GwKuFREOgmo
http://www.flickr.com/photos/quasimondo/2695389651
https://link.springer.com/article/10.1023/B:VISI.0000022288.19776.77
https://www.sciencedirect.com/science/article/pii/S156713481500115X

4.3 MINIMUM SPANNING TREES

> cutl property
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:
« The graph is connected.

 The edge weights are distinct.

= MST exists.

= MST is unique.

Note. Today’s algorithms all work fine with duplicate edge weights.

12

14

20

10

11

16

13

no two edge
weights are equal

15

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge is in the MST.

a crossing edge has one gray

/ and one white endpoint

16w

min-weight crossing edge
must be in the MST

16

Cut property

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.
Cut property. For any cut, its min-weight crossing edge is in the MST.

Note. A cut may have multiple edges in the MST.

Q Q other crossing edges may
Q\ 2 / or may not be in the MST

G\d

Q’/ \8\

min-weight crossing edge
must be in the MST

N -~ N

|
.

17

Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut {2, 3, 5, 6 }?

A. 0-7 (0.16)
B. 2-3 (0.17)
C. 0-2 (0.26)
D. 5-7 (0.28)

(&

®-©

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

©O O O O O O O O O O O O O O O o

.16
.17
.19
.26
.28
.29
.32
. 34
.35
.36
.37
.38
.40
.52
.58
.93

18

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two nonempty sets.

Def. A crossing edge of a cut is an edge that has one endpoint in each set.

Cut property. For any cut, its min-weight crossing edge ¢ is in the MST.
Pf. Suppose ¢ is not in the MST T.
* Adding ¢ to T creates a unique cycle.
 Some other edge fin cycle must also be a crossing edge.
 Removing f and adding e to T'yields a different spanning tree 7.
* Since weight(e) < weight(f), we have weight(T") < weight(T).
* Contradiction. = f

- AN

the MST 7T does
not contain e

adding e to MST T
creates a unique cycle

Framework for minimum spanning tree algorithms

Generic algorithm (to compute MST in G)

T = 2.
Repeat until T is a spanning tree:
- Find a cut in G.
- e < min-weight crossing edge.

- T<TU{el

Efficient implementations.
* Which cut?

 How to compute min-weight crossing edge?

Ex 1. Kruskal's algorithm.

Ex 2. Prim’s algorithm.

20

4.3 MINIMUM SPANNING TREES

Algorithms > edge-weighted graph API

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted edge API

APl. Edge abstraction for weighted edges.

public class Edge 1mplements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v—w
int either() either endpoint
int other(int v) the endpoint that’s not v
int comparelTo(Edge that) compare edges by weight
weight

0 (w)

edge e = v-w

ldiom for processing an edge e. int v = e.either(), w = e.other(v).

Weighted edge: Java implementation

public class Edge 1mplements Comparable<Edge>

{

private final int v, w;
private final double weight;

public Edge(int v, 1nt w, double weight)

this.v = v;
this.w = w;

this.weight = weight;

public 1nt either()
{ return v; }

public 1nt other(int vertex)

{
1t (vertex == v) return w;
else return v;

public 1nt compareTo(Edge that)
{ return Double.compare(this.weight, that.weight); }

Edge-weighted graph API

APl. Same as Graph and Digraph, except with explicit Edge objects.

public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices
void addEdge(Edge e) add weighted edge e to this graph

Tterable<Edge> adj(int v) edges incident to v

24

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

tinyEWG. txt ™6]0].58—{0]2|.26—|0]4|.38—|0]7].16 Bag
V. ovjects

8 E
16 . ~™1]3|.29—|1|2|.36—|1|7|.19—1|5].32
45 0.35 adj[y

' 0
4 7 0.37 -~ ; . . I
570_281/ 6|2(.40—{2]|7]|.34 1{2(.36—0]|2]/.26 213/.17
07 0.16
15 0.32 ~ - 20 —
Ls 032 L — 316/.52 1]3/.29 213/.17

i 4
138}; : - —(™[6|4].93{0]4].38~4]7].37}4]5].35
02 0.26 \ \

6 ~ ‘ _ references to the

L2 036 \ 1]5].32+{5]7][.28}—+4]5].35]} same Edge object
2 7 0.34
62 0.40 \\64.93:60.58—»36.52—»62.40
36 0.52
60 0.58 ~2|7|.34{1|7].19—|0|7|.16—|5|7|.28—1{4]|7].37
6 4 0.93

Edge-weighted graph: adjacency-lists implementation

public class EdgeWeightedGraph
{

private final int V;
private final Bag<Edge>[] adj;

public EdgeWeightedGraph(int V)
{
this.V = V;
adj = (Bag<Edge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adjlv] = new Bag<>();
}

public void addEdge(Edge e)
{

int v = e.either(), w = e.other(v);
adj[v].add(e);
adj[w].add(e);

}

public Iterable<Edge> adj(int v)
{ return adjlv]; }

same as Graph (but adjacency lists of Edge objects)

constructor

add same Edge object to both adjacency lists

26

Minimum spanning tree API

Q. How to represent the MST?
A. Technically, an MST is an edge-weighted graph.

For convenience, we represent it as a set of edges.

public class MST

MST (EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

27

4.3 MINIMUM SPANNING TREES

Algorithms
» Kruskal’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order of weight.

« Add next edge to T unless doing so would create a cycle.
graph edges

sorted by weight

l

0-7 0.16

2-3 0.17

<::> 1-7 0.19

<::> 0-2 0.26

<::> 5-7 0.28
<::> 1-3 0.29

<::> 1-5 0.32

<::> 2-7 0.34

4-5 0.35

1-2 0.36

<::> <::> 4-7 0.37
0-4 0.38

an edge-weighted graph 6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Minimum spanning trees: quiz 3

In which order does Kruskal’s algorithm select edges in MST?

A. 1,2,4,5, 6
B. 1,2,4,5,8
C. 1,2,5,4,8
D. 8,2, 1,5, 4

N
:

1 ? G/C[>
2 3 5 4
\5/ e

30

Kruskal’s algorithm: correctness proof

Proposition. Kruskal’s algorithm computes the MST.

Pf. Kruskal’s algorithm adds edge ¢ to T if and only if ¢ is in the MST.

Kruskal’s algorithm adds edge ¢ = v—w to T.
« Vertices v and w are in different connected components of T.
« Cut = set of vertices connected to v in T.
« By construction of cut, ¢ is a crossing edge and no crossing edge
- is currently in T
- was considered by Kruskal before ¢
* Thus, ¢ is a min weight crossing edge. add edge to tree

e Cut property = ¢ is in the MST.

31

Kruskal’s algorithm: correctness proof

Proposition. Kruskal’s algorithm computes the MST.
Pf. Kruskal’s algorithm adds edge ¢ to T if and only if ¢ is in the MST.
Kruskal’s algorithm discards edge ¢ = v—w.

 From Case 1, all edges currently in T are in the MST.

 The MST can’t contain a cycle, so it can’t also containe¢. =

adding edge to tree
would create a cycle

32

Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge v—w to T create a cycle? If not, add it.
Efficient solution. Use the union-find data structure.
« Maintain a set for each connected component in 7.

* If vand w are in same set, then adding v—w to T"would create a cycle.

* Otherwise, add v—w to 7 and merge sets containing v and w.

connected components

a9

Case 2: adding v-w creates a cycle Case 1: add v—-w to T and merge sets containing v and w

33

Kruskal’s algorithm: Java implementation

public class KruskalMST
{

private Queue<Edge> mst = new Queue<>();

public KruskalMST(EdgeWeightedGraph G)

{
Edgel[| edges = G.edges();
Arrays.sort(edges);
UF uf = new UF(G.V());
for (int 1 =0; 1 < G.EQ; 1++)
{
Edge e = edges|[1];
int v = e.either(), w = e.other(v);
1f (uf.find(v) !'= uf.find(w))
{
mst.enqueue(e);
uf.union(v, w);
}
}
}

public Iterable<Edge> edges()
{ return mst; }

edges in the MST

sort edges by weight

maintain connected components

optimization: stop as soon as V-1 edges in T

greedily add edges to MST

edge v—w does not create cycle

add edge e to MST

merge connected components

34

Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST
in an edge-weighted graph in ©(E log E) time and O(E) extra space.

Pf.

» Bottlenecks are sort and union-find operations.

SORT 1 Elog E
UNION V-1 log V'
FIND 2 F log V'

1t using weighted quick union

« Total. ®(VlogV) + O(FlogV) + O(ElogkE).

N/

dominated by O(E log E)
since graph is connected

35

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree

that minimizes the sum of the squares of the edge weights?

A. Run Kruskal’s algorithm using the original edge weights.
B. Run Kruskal’s algorithm using the squares of the edge weights.
C. Run Kruskal’s algorithm using the square roots of the edge weights.

D. All of the above.

4

!

sum of squares = 4% + 62 + 52 + 102 + 112 + 7% = 347

36

MAXIMUM SPANNING TREE

Problem. Given an undirected graph G with positive edge weights,

find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes ®(E log E) time in the worst case.

maximum spanning tree T (weight = 104)

37

Greed is good

)

Greedy algorithm. Make a locally optimal and irreversible choice at each step of algorithm.

38

4.3 MINIMUM SPANNING TREES

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE > Prim/S algorifhm

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Prim’s algorithm demo

 Start with vertex 0 and grow tree T.
« Repeat until V-1 edges:

- add to T the min-weight edge with exactly one endpointin T

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

©O O O O O O O O O O O O O O o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

40

Minimum spanning trees: quiz 5

In which order does Prim’s algorithm select edges in the MST?

Assume it starts from vertex s.

6
@ 5 _/ ’ Q

41

Prim’s algorithm: proof of correctness

Proposition.

Prim’s algorithm computes the MST.

Pf. Let e= min-weight edge with exactly one endpoint in T.
« Cut = set of vertices in T.

« Cut property = edge ¢ is in the MST. =

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T'?

edge e = 7-5 added to tree
|

OS=6
(7

>0
@ ®

O«

42

Prim’s algorithm: lazy implementation demo

 Start with vertex 0 and grow tree T.
« Repeat until V-1 edges:

- add to T the min-weight edge with exactly one endpointin T

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

©O O O O O O O O O O O O O O o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

43

Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in 77?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
« Key = edge; priority = weight of edge.
* DELETE-MIN to determine next edge ¢ =v-w to add to T.
 If both endpoints v and w are marked (both in T), disregard.
¢ Otherwise, let w be the unmarked vertex (not in 7):
- add eto Tand mark w

- add to PQ any edge incident to w

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.20
.28
. 34
.37
.38
.58

O O O O OO0

Prim’s algorithm: lazy implementation

public class LazyPrimMST

{
private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq: // PQ of edges

public LazyPrimMST(WeightedGraph G)
{

pg = new MinPQ<>();

mst = new Queue<>();

marked = new boolean[G.V()];

visit(G, 0); «—— assume graph G is connected

while (mst.si1ize() < G.V() - 1)

{
Edge e = pq.deIMin();
int v = e.either(), w = e.other(v);
1f (marked[v] && marked[w]) continue;
mst.enqueue(e) ;
it (!marked[v]) visit(G, v);
it (!'marked|[w]) visit(G, w);

}

private voild visit(WeightedGraph G, 1int v)
{
marked[v] = true; < add vto tree T
for (Edge e : G.adj(v))
1t (!marked[e.other(v)])
pq.insert(e);

public Iterable<Edge> mst()
{ return mst; }

for each edge ¢ = v—w:
add e to PQ if w not already in T

repeatedly delete the min-weight
edge e = v—w from PQ

ignore if both endpoints in tree T

add edge e to tree T

add eithervorw to tree T

45

Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST
in O(E log E) time and O(F) extra space.

Pf.

» Bottlenecks are PQ operations.

» Each edge is added to PQ at most once.

» Each edge is deleted from PQ at most once.

INSERT E log E

DELETE-MIN E log £

T using binary heap

46

Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in 7.
Observation. For each vertex v, need only min-weight edge connecting v to 7.
« MST includes at most one edge connecting v to 7. Why?

* |If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; ©(V) extra space; O(E log V) running time in worst case.

47

MST: algorithms of the day

algorithm visualization

Kruskal e x? 173
AL
M ,\W/:g%. <A
Ay"‘ }::I.“”v ..‘ﬁ
Prim

bottleneck

sorting

union—find

priority queue

running time

Elog E

ElogV

48

© Copyright 2023 Robert Sedgewick and Kevin Wayne

