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Symbol table review

 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge.  Θ(log n) time in worst case. 
 
This lecture.  2–3 trees and left-leaning red–black BSTs.
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binary search 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log n n n ✔ compareTo() "

BST n n n ✔ compareTo() "

goal log n log n log n ✔ compareTo() #

optimized for teaching and coding 
(introduced in COS 226)

co-invented by Bob Sedgewick in the 1970s
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2–3 tree

Allow 1 or 2 keys per node. 

・2-node:  one key, two children. 

・3-node:  two keys, three children. 
 
Symmetric order.  Inorder traversal yields keys in ascending order. 
Perfect balance.  Every path from the root to a null link has the same length. 
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between E and J

larger than J
smaller than E
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null link

how to maintain?



2–3 tree demo

Search. 

・Compare search key against key(s) in node. 

・Find interval containing search key. 

・Follow associated link (recursively).
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2–3 tree:  insertion

Insertion into a 2-node at bottom. 

・Add new key to 2-node to create a 3-node.
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2–3 tree:  insertion

Insertion into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it’s a 4-node, split it into three 2-nodes.
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Balanced search trees:  quiz 1

Suppose that you insert P into the following 2-3 tree.  
What will be the root of the resulting 2–3 tree?

A. E 

B. E R 

C. M 

D. P 

E. R

8

S XA C

E R

H M



Balanced search trees:  quiz 2

What is the maximum height of a 2–3 tree containing n keys?  

A.   ~ log3 n 

B.   ~ log2 n 

C.   ~ 2 log2 n

D.    ~ n

height  ~  log3 n
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height  ~  log2 n

all 3-nodes (min height)

all 2-nodes (max height)



2–3 tree:  performance

Perfect balance.  Every path from the root to a null link has the same length. 
 
 
 
 
 
 
 
Key property.  The height of a 2–3 tree containing n keys is Θ(log n). 

・Min:  ~ log3 n  ≈  0.631 log2 n.  [all 3-nodes] 

・Max:  ~ log2 n.        [all 2-nodes] 

・Between 18 and 30 for a billion keys. 
 
 
Bottom line.  Search and insert take Θ(log n) time in the worst case.
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Typical 2-3 tree built from random keys



implementation

guarantee 
ordered

ops?
key

interface
emoji

search insert delete

sequential search 
(unordered list) n n n equals() ☹

binary search 
(sorted array) log n n n ✔ compareTo() "

BST n n n ✔ compareTo() "

2-3 trees log n log n log n ✔ compareTo() #

ST implementations:  summary

18

but hidden constant c is large 
(depends upon implementation)



“  Beautiful algorithms are not always the most useful. ”

           —  Donald Knuth

2–3 tree:  implementation?

Direct implementation is complicated, because: 

・Maintaining multiple node types is cumbersome. 

・Might need two compares to move one level down tree. 

・Need to move back up the tree to split 4-nodes. 

・Large number of cases for splitting. 
 
 
 
 
 
 
 
 
 
 
Bottom line.  Could do it (see COS 326!), but there’s a better way.

public void put(Key key, Value val) 
{ 
   Node x = root; 
   while (x.getTheCorrectChild(key) != null) 
   { 
      x = x.getTheCorrectChildKey(); 
      if (x.is4Node()) x.split(); 
   } 
   if      (x.is2Node()) x.make3Node(key, val); 
   else if (x.is3Node()) x.make4Node(key, val); 
}

fantasy code

19
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How to implement 2–3 trees as binary search trees?

Challenge.  How to represent a 3 node? 
 
 
Approach 1.  Two BST nodes. 

・No way to tell a 3-node from two 2-nodes. 

・Can’t (uniquely) map from BST back to 2–3 tree.  
 
 
Approach 2.  Two BST nodes, plus red “glue” node. 

・Wastes space for extra node. 

・Messy code. 
 
 
Approach 3.  Two BST nodes, with red “glue” link. 

・Widely used in practice. 

・Arbitrary restriction:  red links lean left.
21
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1.  Represent 2–3 tree as a BST. 
2.  Use “internal” left-leaning red links as “glue” for 3–nodes. 

Left-leaning red–black BSTs

221−1 correspondence between red-black and 2-3 trees
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between
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two nodes in the corresponding red–black BST 
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Key property.  1–1 correspondence between 2–3 trees and LLRB trees.

X
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black tree

corresponding red–black BST

Left-leaning red–black BSTs
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1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

2–3 tree



Which LLRB tree corresponds to the following 2–3 tree?

 
 
 
 
 
 
 

C. Both A and B. 

D. Neither A nor B.

Balanced search trees:  quiz 3

24
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An equivalent definition of LLRB trees (without reference to 2–3 trees)

 
Def.  A red–black BST is a BST such that: 

・No node has two red links connected to it. 

・Red links lean left.  

・Every path from root to null link has the same number of black links.

25

“perfect black balance”

symmetric order

color invariants
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Red–black BST representation

Each node is pointed to by precisely one link (from its parent)  ⇒ 

can encode color of links in child nodes. 

26

 private class Node 
 { 
    private Key key; 
    private Value val; 
    private Node left, right; 
 
 }

private boolean isRed(Node h) 
{ 
   if (h == null) return false; 
   return h.color == RED; 
} null links are black

private static final boolean RED   = true; 
private static final boolean BLACK = false;

private boolean color; color of parent link private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val)
   {
      this.key   = key;
      this.val   = val;
      this.N     = 1;
      this.color = RED;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK

h.left.color 
is red h.right.color 

is black
h

null links 
are black



1−1 correspondence between red-black and 2-3 trees
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how we draw LLRB trees
(color in links)

Review:  the road to LLRB trees
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how we implement LLRB trees
(color in nodes)
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Search in a red–black BST

Observation.  Red-black BSTs are BSTs  ⇒  search is the same as for BSTs (ignore color). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark.  Many other operations (iteration, floor, rank, selection) are also identical.
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public Value get(Key key) 
{ 
   Node x = root; 
   while (x != null) 
   { 
      int cmp = key.compareTo(x.key); 
      if      (cmp < 0) x = x.left; 
      else if (cmp > 0) x = x.right; 
      else return x.val; 
   } 
   return null; 
}

but runs faster 
(because of better balance)

1−1 correspondence between red-black and 2-3 trees
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Insertion into a LLRB tree:  overview

Basic strategy.  Maintain 1–1 correspondence with 2–3 trees. 
 
During internal operations, maintain: 

・Symmetric order. 

・Perfect black balance. 

・[ but not necessarily color invariants ]  
 
Example violations of color invariants: 
 
 
 
 
 
 
 
To restore color invariants:  perform color flips and rotations.
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A
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E
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left-left red
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E

A

S

left-right red
(a temporary 4-node)



Elementary red–black BST operations

Color flip.  Recolor to split a (temporary) 4-node. 

Invariants.  Maintains symmetric order and perfect black balance.
31

greater
than S

between
E and S

between
A and E

less
than A

h

SA

 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    assert isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 } 

flip colors
(before)

E



Elementary red–black BST operations

Color flip.  Recolor to split a (temporary) 4-node. 

Invariants.  Maintains symmetric order and perfect black balance.
32
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 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    assert isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 } 

flip colors
(after)

E



Elementary red–black BST operations

Left rotation.  Orient a (temporarily) right-leaning red link to lean left. 

Invariants.  Maintains symmetric order and perfect black balance.
33
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x
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E

rotate E left
(before)  private Node rotateLeft(Node h) 

 { 
    assert !isRed(h.left); 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red–black BST operations

Left rotation.  Orient a (temporarily) right-leaning red link to lean left. 

Invariants.  Maintains symmetric order and perfect black balance.
34

greater
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x

h E

between
E and S

S

rotate E left
(after)  private Node rotateLeft(Node h) 

 { 
    assert !isRed(h.left); 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red–black BST operations

Right rotation.  Orient a left-leaning red link to (temporarily) lean right. 

Invariants.  Maintains symmetric order and perfect black balance.
35

rotate S right
(before)
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 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    assert !isRed(h.right); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red–black BST operations

Right rotation.  Orient a left-leaning red link to (temporarily) lean right. 

Invariants.  Maintains symmetric order and perfect black balance.
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 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    assert !isRed(h.right); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

rotate S right
(after)

greater
than S

h

x

S

between
E and S

less
than E

E



Balanced search trees:  quiz 4

Which sequence of elementary operations transforms the red–black BST at left  
to the one at right?

 
 
 
 
 
 
 

A. Color flip E; left rotate R. 

B. Color flip R; left rotate E. 

C. Color flip R; left rotate R. 

D. Color flip R; right rotate E.
37
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Insertion into a LLRB tree

・Do standard BST insert and color new link red. 

・Repeat up the tree until color invariants restored: 
– two left red links in a row?   ⇒  rotate right  
– left and right links both red?   ⇒  color flip 
– only right link red?     ⇒  rotate left
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Insertion into a LLRB tree

・Do standard BST insert and color new link red. 

・Repeat up the tree until color invariants restored: 
– two left red links in a row?   ⇒  rotate right  
– left and right links both red?   ⇒  color flip 
– only right link red?     ⇒  rotate left
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Red–black BST construction demo
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Insertion into a LLRB tree:  Java implementation

・Do standard BST insert and color new link red. 

・Repeat up the tree until color invariants restored: 
– only right link red?     ⇒  rotate left  
– two left red links in a row?   ⇒  rotate right  
– left and right links both red?   ⇒  color flip
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 private Node put(Node h, Key key, Value val) 
 { 
    if (h == null) return new Node(key, val, RED); 
 
    int cmp = key.compareTo(h.key); 
    if      (cmp < 0) h.left  = put(h.left,  key, val); 
    else if (cmp > 0) h.right = put(h.right, key, val); 
    else h.val = val; 
 
 
 
 

    return h; 
 }

if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h); 
if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h); 
if (isRed(h.left)  && isRed(h.right))     flipColors(h);

restore color 
invariants

only a few extra lines of code provides near-perfect balance

each method that changes 
the tree shape returns 

the root of the resulting subtree

insert at bottom 
(and color it red)



Insertion into a LLRB tree:  visualization
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255 insertions in random order



Insertion into a LLRB tree:  visualization
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255 insertions in ascending order



Insertion into a LLRB tree:  visualization
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254 insertions in descending order



Balance in LLRB trees

Proposition.  Height of LLRB tree is ≤ 2 log2 n.  
Pf. 

・Black height = height of corresponding 2–3 tree  ≤  log2 n. 

・Never two red links in a row.  
⇒  height of LLRB tree ≤  (2 ! black height) + 1 

    ≤  2 log2 n  +  1. 

・[ A slightly more careful argument shows height ≤  2 log2 n. ]
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height  ≤  2 log2 n



implementation

guarantee 
ordered

ops?
key

interface
emoji

search insert delete

sequential search 
(unordered list) n n n equals() ☹

binary search 
(sorted array) log n n n ✔ compareTo() "

BST n n n ✔ compareTo() "

2–3 trees log n log n log n ✔ compareTo() #

red–black BSTs log n log n log n ✔ compareTo() $

ST implementations:  summary
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hidden constant c is small 
(≤ 2 log2 n compares)



3.3  BALANCED SEARCH TREES

‣2–3 search trees 

‣ red–black BSTs (representation) 

‣ red–black BSTs (operations) 

‣ context
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Balanced search trees in the wild

Red–black BSTs are widely used as system symbol tables. 

・Java:  java.util.TreeMap, java.util.TreeSet. 

・C++ STL:  map, multimap, multiset. 

・Linux kernel:  CFQ I/O scheduler, VMAs, linux/rbtree.h. 
 
Other balanced BSTs.  AVL trees, splay trees, randomized BSTs, rank-balanced BSTs,  …. 
 
 
 
 
 
B-trees (and cousins) are widely used for file systems and databases.
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Industry story 1:  red–black BSTs

Telephone company contracted with database provider to build a  
real-time database to store customer information. 
 
Database implementation. 

・Red–black BST. 

・Exceeding height limit of 80 triggered error-recovery process. 
 
 
Database crashed. 

・Main cause = height bound exceeded! 

・Telephone company sues database provider. 

・Legal testimony: 
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should support up to 240 keys

“ If implemented properly, the height of a red–black BST 

   with n keys is at most 2 log2 n. ”    —  expert witness



Industry story 2:  red–black BSTs
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https://twitter.com/cyberomin/status/835888786462625792

https://twitter.com/cyberomin/status/835888786462625792


The red–black tree song (by Sean Sandys)
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I see a brand new node,
I want to paint it black.
We need a balanced tree,
we’ve got to paint it black.

I see a brand new node,
I want to paint it black.
No time for AVL trees,
We must paint it black.

I want to find my key in
log n time—that’s all.
Rotating subtrees ’round,
sure can be a ball.

I see a brand new node,
I want to paint it black.
Can’t have a lot of red nodes,
we must paint them black.

Unfortunately, coding them
can be a $!#%.
If we had half a brain,
to splay trees we would switch.

And if they’re still confusing,
you should have no fear.
Because outside this class,
of them you’ll never hear.

I wanna see it,
painted, painted black.
Black is nice.

I wanna see the nodes painted black.
Black is nice.

I wanna see ’em
painted, painted, painted, painted black.

Mm mm mm mm mm mm mm.
Mm mm mm mm mm-mm.
Mm mm mm mm mm mm mm.
Mm mm mm mm mm-mmm.

performed by U. Washington CSE Band ’02

http://gsc-history.cs.washington.edu/2002-2003/orientation/
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