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Binary search trees

Definition.  A BST is a binary tree in symmetric order. 
 
A binary tree is either: 

・Empty. 

・A node with links to two disjoint binary trees— 
the left subtree and the right subtree. 

 
 
 
Symmetric order.  Each node has a key; a node’s key is: 

・Larger than all keys in its left subtree. 

・Smaller than all keys in its right subtree. 

・[Duplicate keys not permitted.]
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Anatomy of a binary search tree



Binary search trees:  quiz 1

Which of the following properties hold? 

A.  If a binary tree is heap ordered, then it is symmetrically ordered. 

B.  If a binary tree is symmetrically ordered, then it is heap ordered. 

C.  Both A and B. 

D.  Neither A nor B.
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Binary search tree demo

Search.  If less, go left; if greater, go right; if equal, search hit.
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Binary search tree demo

Insert.  If less, go left; if greater, go right; if null, insert.
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BST representation in Java

Java definition.  A BST is a reference to a root Node. 

A Node is composed of four fields: 

・A Key and a Value. 

・A reference to the left and right subtree.
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smaller keys larger keys

Binary search tree

BST with smaller keys BST with larger keys

key val

BST

Node
left right

Key and Value are generic types; Key is Comparable

private class Node 
{ 
 
 
 

   public Node(Key key, Value val) 
   { 
      this.key = key; 
      this.val = val; 
   } 
}

private Key key; 
private Value val; 
private Node left, right;



BST implementation (skeleton)
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public class BST<Key extends Comparable<Key>, Value> 
{ 
 

   private class Node 
   {  /* see previous slide */  } 
  
   public void put(Key key, Value val)  
   {  /* see slide in this section */  } 

   public Value get(Key key) 
   {  /* see next slide */  } 

   public Iterable<Key> keys() 
   {  /* see slides in next section */  } 

   public void delete(Key key) 
   {  /* see textbook */  } 

}

private Node root; root of BST



BST search:  Java implementation

Get.  Return value corresponding to given key, or null if no such key. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cost.  Number of compares = 1 + depth of node.
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 public Value get(Key key) 
 { 
    Node x = root; 
    while (x != null) 
    { 
       int cmp = key.compareTo(x.key); 
       if      (cmp < 0) x = x.left; 
       else if (cmp > 0) x = x.right; 
       else return x.val; 
    } 
    return null; 
 }
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BST insert

Put.  Associate value with key.  

・Search for key in BST. 

・Case 1:  Key in BST  ⇒  reset value. 

・Case 2:  Key not in BST  ⇒  add new node. 
 
 
 
 
 
 
 
 
 
 
 
Cost.  Number of compares = 1 + depth of node.
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 public void put(Key key, Value val) 
 {  root = put(root, key, val);  } 

 private Node put(Node x, Key key, Value val) 
 { 
    if (x == null) return new Node(key, val); 
    int cmp = key.compareTo(x.key); 
 
 
 

    return x; 
 }

 if      (cmp < 0) x.left  = put(x.left,  key, val); 
 else if (cmp > 0) x.right = put(x.right, key, val); 
 else x.val = val;

Warning: concise but tricky code; read carefully!
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Tree shape

・Many BSTs correspond to same set of keys. 

・Number of compares for search/insert = 1 + depth of node. 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line.  Tree shape depends on order of insertion.
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BST insertion:  random order visualization

Ex.  Insert 255 keys in random order. 
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Suppose that you insert n keys in random order into a BST.  
What is the expected height of the resulting BST?  
 

A.  ~ log2 n 

B.  ~ 2 ln n

C.  ~ 4.31107 ln n

D.  ~ n

Binary search trees:  quiz 2
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How Tall is a Tree? 

Bruce Reed 
CNRS, Paris, France 

reed@moka.ccr.jussieu.fr 

ABSTRACT 
Let H~ be the height of a random binary search tree on n 
nodes. We show that  there exists constants a = 4.31107.. .  
and/3 = 1.95.. .  such that E(H~) = c~logn - / 3 1 o g l o g n  + 
O(1), We also show that  Var(H~) = O(1). 

Categories and Subject Descriptors 
E.2 [Data  S t ruc tu res ] :  Trees 

1. THE RESULTS 
A binary search tree is a binary tree to each node of which 
we have associated a key; these keys axe drawn from some 
totally ordered set and the key at v cannot be larger than 
the key at its right child nor smaller than the key at its left 
child. Given a binary search tree T and a new key k, we 
insert k into T by traversing the tree starting at the root 
and inserting k into the first empty position at which we 
arrive. We traverse the tree by moving to the left child of the 
current node if k is smaller than the current key and moving 
to the right child otherwise. Given some permutation of 
a set of keys, we construct a binary search tree from this 
permutation by inserting them in the given order into an 
initially empty tree. 
The height Hn of a random binary search tree T,~ on n 
nodes, constructed in this manner starting from a random 
equiprobable permutation of 1 , . . . ,  n, is known to be close 
to a l o g n  where a = 4.31107...  is the unique solution on 
[2, ~ )  of the equation a log((2e)/a) = 1 (here and elsewhere, 
log is the natural logarithm). First, Pittel[10] showed that  
H,~/log n --~ 3' almost surely as n --+ c~ for some positive 
constant 7. This constant was known not to exceed c~ [11], 
and Devroye[3] showed that "7 = a, as a consequence of the 
fact that E(Hn) ~ c~logn. Robson[12] has found that Hn 
does not vary much from experiment to experiment, and 
seems to have a fixed range of width not depending upon n. 
Devroye and Reed[5] proved that  Var(Hn) = O((log log n)2), 
but this does not quite confirm Robson's findings. It is the 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
STOC 2000 Portland Oregon USA 
Copyright ACM 2000 1-58113-184-4/00/5...$5.00 

3 purpose of this note to prove that  for /3 -- ½ + ~ ,  we 
have: 

THEOREM 1. E(H~) = ~ l o g n  - / 3 1 o g l o g n  + O(1) and 
Var(Hn) = O(1) . 

R e m a r k  By the definition of a,  /3 = 3~ 7"g~" The first defi- 
nition given is more suggestive of why this value is correct, 
as we will see. 
For more information on random binary search trees, one 
may consult [6],[7], [1], [2], [9], [4], and [8]. 
R e m a r k  After I announced these results, Drmota(unpublished) 
developed an alternative proof of the fact that  Var(Hn) = 
O(1) using completely different techniques. As our two 
proofs illuminate different aspects of the problem, we have 
decided to submit the journal versions to the same journal 
and asked that they be published side by side. 

2. A MODEL 
If we construct a binary search tree from a permutation 
of 1, ..., n and i is the first key in the permutation then: 
i appears at the root of the tree, the tree rooted at the 
left child of i contains the keys 1, ..., i - 1 and its shape 
depends only on the order in which these keys appear in 
the permutation, mad the tree rooted at the right child of i 
contains the keys i + 1, ..., n and its shape depends only on 
the order in which these keys appear in the permutation. 
From this observation, one deduces that  Hn is also the num- 
ber of levels of recursion required when Vazfilla Quicksort 
(i.e. the version of Quicksort in which the first element in 
the permuation is chosen as the pivot) is applied to a random 
permutation of 1, ..., n. 
Our observation also allows us to construct Tn from the top 
down. To ease our exposition, we think of T,~ as a labelling 
of a subtree of T~,  the complete infinite binary tree. 
We will expose the key associated with each node t of T~. 
To underscore the relationship with Quicksort, we refer to 
the key at t as the pivot at t. Suppose then that we have 
exposed the pivots for some of the nodes forming a subtree 
of Too, rooted at the root of T~.  Suppose further that for 
some node t of T~¢, all of the ancestors of t are in T,~ and 
we have chosen their pivots. Then, these choices determine 
the set of keys Kt which will appear at the (possibly empty) 
subtree of T,~ rooted at t, but  will have no effect on the order 
in which we expect the keys in Kt to appear. Indeed each 
permutation of Kt is equally likely. Thus, each of the keys 
in Kt will be equally likely to be the pivot. We let nt be 
the number of keys in this set and specify the pivot at t by 
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ST implementations:  summary
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implementation
guarantee average case

operations
on keys

search insert search hit insert

sequential search
(unordered list) n n n n equals()

binary search
(ordered array) log n n log n n compareTo()

BST n n log n log n compareTo()

Why not shuffle to ensure 
a (probabilistic) guarantee 

of Θ(log n) time?
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Binary search trees:  quiz 3

In which order does traverse(root) print the keys in the BST?
 
 
 
 
 
 
 

A.   A C E H M R S X 

B.   S E A C R H M X 

C.   C A M H R E X S 

D.   S E X A R C H M
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private void traverse(Node x)  
{ 
   if (x == null) return;  
   traverse(x.left); 
   StdOut.println(x.key); 
   traverse(x.right);  
} 

A
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root

inorder

preorder

postorder

level order



Inorder traversal
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output: A C E H M R S X

               print M

         inorder(C)
            print C
            done C

      inorder(A)

inorder(S)
   inorder(E)

         print A

         done A
      print E
      inorder(R)
         inorder(H)
            print H
            inorder(M)

               done M
            done H
         print R 
         done R 
      done E 
   print S 
   inorder(X)
      print X
      done X
   done S
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・Traverse left subtree. 

・Enqueue key. 

・Traverse right subtree. 

Property.  Inorder traversal of a BST yields keys in ascending order.

Binary search tree

BST with smaller keys BST with larger keys

key val

BST

Node
left right

Inorder traversal

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

18

 public Iterable<Key> keys()  
 {  
    Queue<Key> queue = new Queue<Key>();  
    inorder(root, queue);  
    return queue; 
 }

private void inorder(Node x, Queue<Key> queue)  
{  
   if (x == null) return;  
   inorder(x.left, queue);  
   queue.enqueue(x.key);  
   inorder(x.right, queue);  
} 

add items to a collection that is Iterable 
and return that collection



Inorder traversal:  running time

Property.  Inorder traversal of a binary tree with n nodes takes Θ(n) time. 
Pf.  Θ(1) time per node in BST.
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LEVEL-ORDER TRAVERSAL

Level-order traversal of a binary tree. 

・Process root. 

・Process children of root, from left to right. 

・Process grandchildren of root, from left to right. 

・…

M
20

level-order traversal:
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Q1.  How to compute level-order traversal of a binary tree in Θ(n) time?

queue.enqueue(root); 
while (!queue.isEmpty()) 
{  
   Node x = queue.dequeue(); 
   if (x != null) 
   { 
      StdOut.println(x.item); 
      queue.enqueue(x.left); 
      queue.enqueue(x.right); 
   } 
}

LEVEL-ORDER TRAVERSAL
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Mlevel-order traversal: S E T A R C H



S

LEVEL-ORDER TRAVERSAL

Q2.  Given the level-order traversal of a BST, how to (uniquely) reconstruct? 

Ex.  S E T A R C H M

E

22
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Minimum and maximum

Minimum.  Smallest key in BST. 
Maximum.  Largest key in BST. 
 
Q.  How to find the min / max? 
A.  Go down left / right spine.
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Examples of BST order queries

A
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min()
max()

max

min

running time proportional to 
depth of node in BST



Floor and ceiling

Floor.  Largest key in BST  ≤  query key. 
Ceiling.  Smallest key in BST  ≥  query key.
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Examples of BST order queries

A
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min()
max()

floor(I)

floor(G)
ceiling(T)



Computing the floor

Floor.  Largest key in BST  ≤  query key.  
Ceiling.  Smallest key in BST  ≥  query key. 
 
Key idea. 

・To compute floor(key) or ceiling(key), search for key. 

・Both floor(key) and ceiling(key) are on search path. 

・Moreover, as you go down search path, any candidates get better and better.
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Examples of BST order queries
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min()
max()

floor(I)

ceiling(T)
floor(G)



Computing the floor: Java implementation

Invariant 1.  The floor is either champ or in subtree rooted at x. 
Invariant 2.  Node x is in the right subtree of node containing champ.
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public Key floor(Key key) 
{  return floor(root, key, null);  } 

private Key floor(Node x, Key key, Key champ) 
{   
   if (x == null) return champ; 
   int cmp = key.compareTo(x.key); 
   if      (cmp < 0) return floor(x.left, key, champ); 
   else if (cmp > 0) return floor(x.right, key, x.key); 
   else              return x.key; 
} 

key in node x is too large 
(floor can’t be in right subtree of x)

key in node x is a candidate for floor 
(floor can’t be in left subtree of x)

key in node x is better candidate than champ

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

key in BST

champ must be floor

assuming champ is not null



BST:  ordered symbol table operations summary
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sequential  
search

binary 
search BST

search n log n h

insert n n h

min / max n 1 h

floor / ceiling n log n h

rank n log n h

select n 1 h

ordered iteration n log n n n

h = height of BST

order of growth of worst-case running time of ordered symbol table operations



ST implementations:  summary

implementation

worst case
ordered

ops?
key

interface
search insert

sequential search 
(unordered list) n n equals()

binary search 
(sorted array) log n n ✔ compareTo()

BST n n ✔ compareTo()

red-black BST log n log n ✔ compareTo()
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next lecture:  BST whose height is guarantee to be Θ(log n)
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