
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 2/14/23 6:48 AM

2.1  ELEMENTARY SORTS

‣ rules of the game 

‣ selection sort 

‣ insertion sort 

‣ binary search

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


2.1  ELEMENTARY SORTS

‣ rules of the game 

‣ selection sort 

‣ insertion sort 

‣ binary search
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Goal.  Rearrange an array of n items in ascending order by key.

Sorting problem

3

item

key

Granger Hermione Gryffindor 1998

  Last  ▾ First House Year

Weasley Ginny Gryffindor 1999

Weasley Ron Gryffindor 1998

Parkinson Pansy Slytherin 1998

Longbottom Neville Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Chang Cho Ravenclaw 1997

Abbott Hannah Hufflepuff 1998

Malfoy Draco Slytherin 1998

Potter Harry Gryffindor 1998

sorting hat



Goal.  Rearrange an array of n items in ascending order by key.

Sorting problem

4

item

key

Weasley Ginny Gryffindor 1999

Weasley Ron Gryffindor 1998

Parkinson Pansy Slytherin 1998

Longbottom Neville Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Granger Hermione Gryffindor 1998

Chang Cho Ravenclaw 1997

Abbott Hannah Hufflepuff 1998

Malfoy Draco Slytherin 1998

Potter Harry Gryffindor 1998

sorted by key

  Last  ▾ First House Year

sorting hat



Sorting is a well-defined problem if there is a binary relation ≤ that satisfies: 

・Totality:  either v ≤ w or w ≤ v or both. 

・Transitivity:  if both v ≤ w and w ≤ x, then v ≤ x.

numerical order (descending)

Sorting problem

chronological order
5

lexicographic order

Examples.

mathematically, a “weak order”



Sorting problem

Sorting is a well-defined problem if there is a binary relation ≤ that satisfies: 

・Totality:  either v ≤ w or w ≤ v or both. 

・Transitivity:  if both v ≤ w and w ≤ x, then v ≤ x. 
 
 
 
 
Non-examples.

6

Ro–sham–bo order
(violates transitivity)

COS 126

COS 226 COS 217

COS 423 COS 333

course prerequisites
(violates totality)

the <= operator for double
(irreflexive, which violates totality)

~/Desktop/sort> jshell 
Math.sqrt(-1.0) <= Math.sqrt(-1.0); 
false

mathematically, a “weak order”



Sample sort clients

Goal.  General-purpose sorting function. 
Ex 1.  Sort strings in alphabetical order.

public class StringSorter 
{ 
   public static void main(String[] args) 
   { 
      String[] a = StdIn.readAllStrings();  
      Insertion.sort(a); 
      for (int i = 0; i < a.length; i++)  
         StdOut.println(a[i]); 
   } 
}

7

~/Desktop/sort> more words3.txt 
bed bug dad yet zoo ... all bad yes  

~/Desktop/sort> java StringSorter < words3.txt 
all bad bed bug dad ... yes yet zoo 
[suppressing newlines]



Sample sort clients

Goal.  General-purpose sorting function. 
Ex 2.  Sort real numbers in numerical order.

8

public class Experiment 
{ 
   public static void main(String[] args) 
   { 
      int n = Integer.parseInt(args[0]); 
      Double[] a = new Double[n]; 
      for (int i = 0; i < n; i++) 
         a[i] = StdRandom.uniform(); 
      Insertion.sort(a); 
      for (int i = 0; i < n; i++) 
         StdOut.println(a[i]); 
   } 
}

~/Desktop/sort> java Experiment 10 
0.08614716385210452 
0.09054270895414829 
0.10708746304898642 
0.21166190071646818 
0.363292849257276 
0.460954145685913 
0.5340026311350087 
0.7216129793703496 
0.9003500354411443 
0.9293994908845686



Sample sort clients

Goal.  General-purpose sorting function. 
Ex 3.  Sort playing cards by suit and rank.

9

public class PlayingCard 
{ 
   public static void main(String[] args) 
   { 
      PlayingCard[] cards = deal(13);         
      Insertion.sort(cards); 
      draw(cards); 
   } 
}

~/Desktop/sort> java PlayingCard 
 
 
 
 
 
 
 
 



How can a single function sort any type of data?

Goal.  General-purpose sorting function.

10

No problem. Whenever you need to 
compare two words, give me a call back.

Please sort these Japanese names for me:  
あゆみ,  アユミ,  Ayumi, 歩美,  ….

But I don’t speak Japanese and I 
don’t know how words are ordered.

オーケー.  Just make sure 
to use a weak order.



Callbacks

Goal.  General-purpose sorting function. 
 
Solution.  Callback = reference to executable code passed to other code and later executed. 

・Client passes array of objects to sort() function. 

・The sort() function calls object’s compareTo() method as needed. 
 
Implementing callbacks. 

・Python, ML, Javascript:  first-class functions.  

・Java:  interfaces. 

・C#:  delegates. 

・C:  function pointers. 

・C++:  class-type functors.

11

in effect, client passes compareTo() 
method to sort() function; 
the callback occurs when 

sort() invokes compareTo()



Java interfaces

Interface.  A set of related methods that define some behavior (partial API) for a class. 
 
 
 
 
 
 
 
Class that implements interface.  Must implement all interface methods.

12

public class String implements Comparable<String>  
{ 
    ... 

    public int compareTo(String that) 
    { 
        ... 
    } 
}

public interface Comparable<Item> 
{ 
   public int compareTo(Item that); 
}

java.lang.Comparable

class promises to 
honor the contract

class abides by 
the contract

contract: method with this signature 
(and prescribed behavior)



public class String implements Comparable<String>  
{ 
    ... 
    public int compareTo(String that) 
    { 
        ... 
    } 
}

data type implementation (String.java)

Callbacks in Java:  roadmap

13

client (StringSorter.java)

public class StringSorter 
{ 
   public static void main(String[] args) 
   { 
      String[] a = StdIn.readAllStrings();  
      Insertion.sort(a); 
      ... 
   } 
}

sort implementation (Insertion.java)

public class Insertion 
   public static void sort(Comparable[] a) 
   { 
     ... 
         if (a[i].compareTo(a[j]) < 0) 
      ... 
   } 
}

interface (Comparable.java) 

public interface Comparable<Item> 
{ 
   int compareTo(Item that); 
}

key point: sorting code does not  
depend upon type of data to be sorted

callback

String[] is a subtype 
of Comparable[]



Elementary sorts:  quiz 1

Suppose that the Java architects left out implements Comparable<String> 
in the class declaration for String. What would be the e"ect? 

A.  String.java won’t compile.

B.  StringSorter.java won’t compile.

C.  Insertion.java won’t compile. 

D.  Insertion.java will throw a run-time exception.

14

argument a[] to Insertion.sort(a) must be Comparable[] 

(otherwise, Java might try to call compareTo() on an object with no such method)



Comparable API

Implement compareTo() so that v.compareTo(w) 

・Returns a negative integer if v is less than w. 

・Returns a positive integer if v is greater than w. 

・Returns zero if v is equal to w. 

・Throws an exception if incompatible types (or either is null). 
 
 
 
 
 
 
 
 
Built-in comparable types.  Integer, Double, String, java.util.Date, ... 
User-defined comparable types.  Implement the Comparable interface.

15

v is greater than w
(return positive integer)

v

w

v is less than w
(return negative integer)

v
w

v is equal to w
(return 0)

v w

API requirement: 
the binary relation 

v.compareTo(w) <= 0 
is a weak order



Implementing the Comparable interface

Date data type.  Simplified version of java.util.Date.

16

can compare Date objects 
only to other Date objects

https://algs4.cs.princeton.edu/12oop/Date.java.html

public class Date implements Comparable<Date> 
{ 
   private final int month, day, year; 
 
   public Date(int m, int d, int y) 
   { 
      month = m;  
      day   = d; 
      year  = y; 
   } 

   public int compareTo(Date that) 
   { 
      if (this.year  < that.year ) return -1; 
      if (this.year  > that.year ) return +1; 
      if (this.month < that.month) return -1; 
      if (this.month > that.month) return +1; 
      if (this.day   < that.day  ) return -1; 
      if (this.day   > that.day  ) return +1; 
      return 0; 
   } 
}

https://algs4.cs.princeton.edu/12oop/Date.java.html


2.1  ELEMENTARY SORTS

‣ rules of the game 

‣ selection sort 

‣ insertion sort 

‣ binary search
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Selection sort demo

・In iteration i, find index min of smallest remaining entry. 

・Swap a[i] and a[min].

18

initial array



Visualization.  Sort vertical bars by length.

Selection sort:  visualization

19

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/selection-sort

http://www.sorting-algorithms.com/insertion-sort


Selection sort

Algorithm.  ↑ scans from left to right. 

Invariants. 

・Entries the left of ↑ (including ↑) are fixed and in ascending order. 

・No entry to right of ↑ is smaller than any entry to the left of ↑.

20

in final order ↑
i



Selection sort inner loop

To  maintain algorithm invariants:  

・Advance pointer i one position to right.  
 
 

・Identify index min of minimum entry on right.  
 
 
 
 
 

・Exchange a[i] and a[min].

21

i++;

in final order
exch(a, i, min);

↑↑
i min

int min = i; 
for (int j = i+1; j < n; j++) 
   if (less(a[j], a[min])) 
      min = j;            

↑↑in final order
i min

in final order ↑
i



Two useful sorting primitives (and a cost model)

Helper functions.  Refer to data only through compares and exchanges. 
 
 
Compare.  Is item v less than item w ? 

 
 
Exchange.  Swap array entries a[i] and a[j].

22

private static boolean less(Comparable v, Comparable w) 
{  return v.compareTo(w) < 0;  }

private static void exch(Object[] a, int i, int j) 
{ 
   Object swap = a[i]; 
   a[i] = a[j]; 
   a[j] = swap; 
}

polymorphic method call

use as our cost model for sorting

Java arrays are “covariant” 
(e.g., String[] is a subtype of Object[])

use interface type as argument 
⇒ method works for all subtypes

less("aardvark", "zebra") returns true



Selection sort:  Java implementation

23

https://algs4.cs.princeton.edu/21elementary/Selection.java.html

public class Selection 
{ 
   public static void sort(Comparable[] a) 
   { 
      int n = a.length; 
      for (int i = 0; i < n; i++) 
      { 
         int min = i; 
         for (int j = i+1; j < n; j++) 
            if (less(a[j], a[min])) 
               min = j; 
         exch(a, i, min); 
      } 
   } 

   private static boolean less(Comparable v, Comparable w) 
   {  /* see previous slide */  } 

   private static void exch(Object[] a, int i, int j) 
   {  /* see previous slide */  } 
}

https://algs4.cs.princeton.edu/21elementary/Selection.java.html


Elementary sorts:  quiz 2

How many compares to selection sort an array of n distinct items in reverse order? 

A.  ~ n

B.  ~ 1/4 n2 

C.  ~ 1/2 n2

D.  ~ n 2

24



Selection sort:  mathematical analysis

Proposition.  Selection sort makes (n – 1) + (n – 2) +  ... + 1 + 0  ~ ½ n 2 compares 
and n exchanges to sort any array of n items. 
 
 
 
 
 
 
 
 
 
 
 
Running time insensitive to input.  Θ(n2) compares. 
Data movement is minimal.   Θ(n) exchanges. 
In place.  Θ(1) extra space.

25

Trace of selection sort (array contents just after each exchange)

                       a[]
 i min   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 0   6   S  O  R  T  E  X  A  M  P  L  E 
 1   4   A  O  R  T  E  X  S  M  P  L  E 
 2  10   A  E  R  T  O  X  S  M  P  L  E 
 3   9   A  E  E  T  O  X  S  M  P  L  R 
 4   7   A  E  E  L  O  X  S  M  P  T  R 
 5   7   A  E  E  L  M  X  S  O  P  T  R 
 6   8   A  E  E  L  M  O  S  X  P  T  R 
 7  10   A  E  E  L  M  O  P  X  S  T  R 
 8   8   A  E  E  L  M  O  P  R  S  T  X 
 9   9   A  E  E  L  M  O  P  R  S  T  X 
10  10   A  E  E  L  M  O  P  R  S  T  X 

         A  E  E  L  M  O  P  R  S  T  X  

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

even if input array is sorted



2.1  ELEMENTARY SORTS

‣ rules of the game 

‣ selection sort 

‣ insertion sort 

‣ binary search
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Insertion sort demo

・In iteration i, swap a[i] with each larger entry to its left. 

27

initial array



Insertion sort

Algorithm.  ↑ scans from left to right. 

Invariants. 

・Entries to the left of ↑ (including ↑) are in ascending order. 

・Entries to the right of ↑ have not yet been seen. 

28

in order ↑ not yet seen



Insertion sort:  inner loop

To maintain algorithm invariants: 
  

・Advance pointer i one position to right. 

・Moving from right to left, exchange  
a[i] with each larger entry to its left.

29

i++;

in order not yet seen
↑

for (int j = i; j > 0; j--) 
   if (less(a[j], a[j-1])) 
        exch(a, j, j-1); 
   else break;

in order not yet seen
↑↑↑↑



Insertion sort:  Java implementation

30

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

public class Insertion 
{ 
   public static void sort(Comparable[] a) 
   { 
      int n = a.length; 
      for (int i = 0; i < n; i++) 
         for (int j = i; j > 0; j--) 
            if (less(a[j], a[j-1])) 
               exch(a, j, j-1); 
            else break; 
   } 

   private static boolean less(Comparable v, Comparable w) 
   {  /* as before */  } 

   private static void exch(Object[] a, int i, int j) 
   {  /* as before */  } 

}

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html


Elementary sorts:  quiz 4

How many compares to insertion sort an array of n distinct keys in reverse order? 

A.  ~ n

B.  ~ 1/4  n2 

C.  ~ 1/2  n2

D.  ~ n 2 

31



Insertion sort:  analysis

Worst case.  Insertion sort makes ~ ½ n2  compares and ~ ½ n2 exchanges 
to sort an array of n distinct keys in reverse order. 
Pf.  Exactly i  compares and exchanges in iteration i. 

32

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

0 + 1 + 2 + … + (n – 1) ~ ½ n2

http://www.sorting-algorithms.com/insertion-sort
http://www.sorting-algorithms.com/insertion-sort


Insertion sort:  analysis

Best case.  Insertion sort makes n – 1  compares and 0 exchanges to sort  
an array of n distinct keys in ascending order.

33

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

http://www.sorting-algorithms.com/insertion-sort


Insertion sort:  analysis

Good case.  Insertion sort takes Θ(n) time on “partially sorted” arrays. 
 
Q.  Can we formalize what we mean by partially sorted? 
A.  Yes, in terms of “inversions” (see textbook).

34

in order
not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

http://www.sorting-algorithms.com/insertion-sort


Insertion sort:  practical improvements

Half exchanges.  Shift items over (instead of exchanging). 

・Same compares; fewer array accesses. 

・No longer uses only less() and exch() to access data. 
 
 
 
 
 
 
Binary insertion sort.  Use binary search to find insertion point. 

・Now, worst-case number of compares ~ n log2 n. 

・But still makes Θ(n2) array accesses in worst case.

35

A C H H I M N P Q X Y K B I N A R Y

binary search for first key > K

A C H H I B I N A R YKM N P Q X Y



1.4  ANALYSIS OF ALGORITHMS

‣ rules of the game 

‣ selection sort 

‣ insertion sort 

‣ binary search
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Binary search

Goal.  Given a sorted array and a search key, find index of the search key in the array? 
 
Binary search.  Compare search key with middle entry. 

・Too small, go left. 

・Too big, go right. 

・Equal, found.

37

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

sorted array



Binary search:  assembly instructions

38

https://idea-instructions.com/binary-search/


Binary search:  implementation

Trivial to implement? 

・First binary search published in 1946. 

・First bug-free one in 1962. 

・Bentley experiment:  90% of programmers implement it incorrectly. 

・Bug in Java’s Arrays.binarySearch() discovered in 2006.

39

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

and in C, C++, ...

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html


Binary search:  Java implementation

Invariant.  If key appears in array a[], then a[lo] ≤  key ≤ a[hi].

 public static int binarySearch(String[] a, String key) 
 { 
    int lo = 0, hi = a.length - 1; 
    while (lo <= hi) 
    { 
       int mid = (lo + hi) >>> 1; 
       int compare = key.compareTo(a[mid]); 
       if      (compare < 0) hi = mid - 1; 
       else if (compare > 0) lo = mid + 1; 
       else return mid; 
    } 
    return -1; 
 }

40

why not  mid = (lo + hi) / 2 ?



Binary search:  analysis

Proposition.  Binary search makes at most 1 + log2 n  compares to search 
in any sorted array of length n. 
 
Pf.  

・Each iteration of while loop: 
– calls compareTo() once 
– decreases the length of remaining 

subarray by at least a factor of 2

41

slightly better than 2×,  
due to elimination of a[mid] from subarray 

(or early termination of while loop)

1 + log2 n

n → n /2 → n /4 → n /8 → … → 2 → 1

can happen at most 1 + log2 n times. Why?



Binary search vs. sequential search

42



3-SUM

3-SUM.  Given an array of n distinct integers, count number of triples that sum to 0. 
 
Version 0.  Θ(n3) time.    ✔ 
Version 1.  Θ(n2 log n) time. 
Version 2.  Θ(n2) time.  

Note.  For full credit, use only Θ(1) extra space.

43



Algorithm.  

・Step 1:  Sort the n distinct numbers. 

・Step 2:  For each pair a[i] and a[j]:  
             binary search for -(a[i] + a[j]). 

 
 
Analysis.  Running time is Θ(n2 log n). 

・Step 1:  Θ(n2) with selection sort. 

・Step 2:  Θ(n2 log n) with binary search.

binary search

  (-40, -20)    60 

 (-40, -10)    50 

 (-40,   0)    40 

 (-40,   5)    35 

 (-40,  10)    30 

   ⋮            ⋮ 

 (-20, -10)    30 

   ⋮            ⋮ 

 (-10,   0)    10 

   ⋮            ⋮ 

 ( 10,  30)   -40 

 ( 10,  40)   -50 

 ( 30,  40)   -70

3-SUM:  A Θ(N2 LOG N) ALGORITHM

44

count only if i < j < k 
to avoid both triple counting 

and 10 + 10 + −20

input
  30 -40 -20 -10 40  0 10  5

sort
 -40 -20 -10   0  5 10 30 40

Θ(n2) binary searches 
in an array of length n



3-SUM

3-SUM.  Given an array of n distinct integers, find three such that x + y + z = 0. 
 
Version 0.  Θ(n3) time.    ✔ 
Version 1.  Θ(n2 log n) time.    ✔ 
Version 2.  Θ(n2) time.    [ not much harder ]  

Note.  For full credit, use only Θ(1) extra space. 
 
 
Open research problem 1.  Design algorithm that takes Θ(n1.999) time or better. 
Open research problem 2.  Prove that no Θ(n) time algorithm is possible.

45



Summary

Comparable interface.  Java framework for comparing items. 
 
Selection sort.  Θ(n2) compares; Θ(n) exchanges.  
Insertion sort.  Θ(n2) compares and exchanges in the worst case. 
 
Binary search.  Search a sorted array using Θ(log n) compares.

46



©  Copyright 2023 Robert Sedgewick and Kevin Wayne

47

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

