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Different viewpoints

programmer needs to

develop a working solution
student (you)

will play all of

client wants to solve these roles in this course

problem efficiently

theoretician seeks
’ to understand



Running time

“ As soon as an Analytical Engine exists, it will necessarily guide the future

course of the science. Whenever any result is sought by its aid, the question

will then arise— By what course of calculation can these results be arrived

at by the machine in the shortest time? > — Charles Babbage (15864)
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how many times
do you have to turn
the crank?



Running time

“ As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise— By what course of calculation can these results be arrived

at by the machine in the shortest time? > — Charles Babbage (1864)

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 ef seq.)
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Ada Lovelace’s algorithm
to compute Bernoulli numbers
on Analytic Engine (1843)




An algorithmic success story

N-body simulation.
« Simulate gravitational interactions among n bodies.

* Applications: cosmology, fluid dynamics, semiconductors, ...

* Brute force: n? steps.

» Barnes-Hut algorithm: nlogn steps, enables new research. PU"81

fime
! quadratic
64T —
32T limit on
available time
16T — . : .
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The challenge

Q. Will my program be able to solve a large practical input?

: % :
\'J\'\S 1S mij )DY‘OSY‘QT'O sO S\OOO. u\’)b CJOQS A’ ron Ou)’ OP memorg)?

Stack<Control> stack = new
Stack<Control>();

Our approach. Combination of experiments and mathematical modeling.



Example: 3-Sum

)

3-SuM. Given n distinct integers, how many triples sum to exactly zero?

~/Desktop/3sum> more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

~/Desktop/3sum> java ThreeSum 8ints.txt
4

Context. Connected with problems in computational geometry.

:@@ ORE

(=)

o

&)

_i ‘
J;M-NAAW, y?\‘ — fAM/MJMM

al1] a[j] alk] sum
1 30 -40 10 0 Vv
2 30 -20 -10 0 Vv
3 -40 40 0 0 Vv
4 -10 0 10 0 Vv



3-SUM: brute-force algorithm

public class ThreeSum

{
public static 1nt count(int[] a)
{
int n = a.length;
1nt count = O;
for (Aint 1 =0; 1 < n; 1++) “ check distinct triples
for (int J = 1+1; J < n; J++)
for (int k = jJ+1; k < n; k++)
if (a[i] + al[j] + a[k] == 0) - for simplicity,
ignore integer overflow
count++,;
return count;
}
public static void main(String[] args)
{
In in = new InCargs[0]);
int[] a = 1n.readAllInts():
StdOut.printin(count(a));
}
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Empirical analysis

Run the program for various input sizes and measure running time.

% B

11



Empirical analysis

Run the program for various input sizes and measure running time.

250 0
500 0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1

16,000 ?

1+ on a 2.8GHz Intel PU-226 with 64GB
DDR E3 memory and 32MB L3 cache;
running Oracle Java 1.7.0_45-b18 on
Springdale Linux v. 6.5

12



Data analysis

Standard plot. Plot running time 7T'(n) vs. input size n.

50

running time T(n)
w N
o o

N
()

10

1K 2K 4K 8K
problem size n

Hypothesis (power law). T(n) = an®.

Questions. How to validate hypothesis? How to estimate a and b ?

13



Data analysis

Log-log plot. Plot running time T(n) vs. input size n using log-log scale.

>1.2 7 straight line
lope 3
— of slope N / slope
12.8 - logy(T(n)) = 2.999 log, n + (=33.21)
6.4 -
<
= 3.2
?3 ] T(n) — 23321 x ;2999
= 1.6 —
= 1.006 x 10710 x ;29%
0.8 —
0.4 —
3 orders
of magnitude 0.2 —
0.1 —
I I I I
1K ZIﬁgj’K 8K “order of growth”
of running time is about »n’
[stay tuned]
Regression. Fit straight line through data points. /

Hypothesis. The running time is about 1.006 x 10-1° x 299 seconds.

14



Doubling hypothesis

Doubling hypothesis. Quick way to estimate exponent b in a power-law relationship.

Run program, doubling the size of the input.

BRI
250 0 -

500
1,000
2,000
4,000

8,000

0 4.8
0.1 6.9
0.8 7.7
6.4 8
51.1 8

T'(n) an® _ o
T(n/2)  a(n/2)®
- — b = lo T(n)
2.8 — 982 (0,79
2.9

30 «—— log,(64/0.8)=3.0

3.0

|

seems 1o converge to a constant b=3

Hypothesis. Running time is about T(n) = an®, with b =log, ratio.

15



Doubling hypothesis

Doubling hypothesis. Quick way to estimate exponent b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

3,000 51.1

51.1 = a x 80003
3,000 51.0

= aq = 0.998 x 1010
3,000 51.1

Hypothesis. Running time is about 0.998 x 10-1° x n3 seconds.

T

almost identical hypothesis
to one obtained via regression
(but less work)

16



Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n =96,000.

B. 52 seconds 1,000 0.02
2,000 0.05
C. 117 seconds
4.000 0.20
D. 350 seconds
8,000 0.81
16,000 3.25

32,000 13.01



Experimental algorithmics

System independent effects.

° Algorlthm. L determines exponent b \

in power law a n?

* |nput data.

System dependent effects.
 Hardware: CPU, memory, cache, ...

» Software: compiler, interpreter, garbage collector, ...

« System: operating system, network, other apps, ... )

¢
=) ®
s UDUNEU

Bad news. Sometimes difficult to get accurate measurements.

determines constant a
in power law a n?

19



Context: the scientific method

)

Experimental algorithmics is an example of the scientific method.

- 100cw

el |

771
Chemistry

(1 experiment)

Biology

(1 experiment)
"Tsar Bomba" - Novaya Zemlya archipelago, USSR: Oct. 30, 1961

Physics
(1 experiment)

Computer Science
(1 million experiments)
easier and cheaper than other sciences.

Good news. Experiments are

20
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Mathematical models for running time

Total running time: sum of cost x frequency for all operations.
 Need to analyze program to determine set of operations.
* Frequency depends on algorithm and input data.

* Cost depends on CPU, compiler, operating system, ....

€he New Pork Eimes

PROFILES IN SCIENCE

The Yoda of
Silicon Valley

Donald Knuth, master of algorithms, reflects on 50 years of
his opus-in-progress, “The Art of Computer Programming.”

The Art of The Art of The Art of The Art of
Computer Computer Computer Computer
Programming Programming Programming Programming

Warning. No general-purpose method (e.g., halting problem).



Example: 1-SuM

Q. How many operations as a function of input size n?

1nt count = O;
for (Aint 1 = 0; 1 < n; 1++)
1f (a[1] == 0)
count++;

exactly n array acCcesses

variable declaration 2/5 2
assignment statement 1/5 2
less than compare 1/5 n+1

in practice, depends on

equal to compare 1/10 n caching, bounds checking, ...
(see COS 217)
array access 1/10 @

increment 1/10 nto2n

T representative estimates (with some poetic license)



Analysis of algorithms: quiz 2

How many array accesses as a function of n?

1nt count = 0;
for (Aint 1 =0; 1 < n; 1++)
for (int j = i+1l; j < n; j++)
1f (a[1] + a[j] == 0)
count++;

A. Ynm-1)
B. n(n-1)
C. 2n?

D. 2n(n-1)

24



Example: 2-Sum

Q. How many operations as a function of input size n?

1nt count = O;
for (Aint 1 =0; 1 < n; 1++)
for (int J = 1+1; J < n; J++)
1f (al[1] + a[j] == 0)
count++;

0+14+24+...4+(n—1)

variable declaration 2/5 n+?2 N
assignment statement 1/5 n+2
less than compare 1/5 in+1)(n+2) 14 12 + 13/20 1 + 13/10 1
equal to compare 1/10 Yonm-1) > to
3/10 n* + 3/5 n + 13/10 ns
array access C 1/10) nn-1)
(tedious to count exactly)

increment 1/10 Yn(n+1)to n? y



Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

\

1nt count = O; array accesses, compares, floating-point operations,
for (int i = 0; i < n; i++) disk accesses, API calls, ...
for (int j = i+1l; j < n; j++)
it (al1] + al[j] == 0)
count++,

array access 1/10 Cn (n — 1)) < cost model = array accesses

(we’re assuming compiler/JVM does not

optimize any array accesses away!)

27



Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.

Big Theta notation. Also discard leading coefficient.

4n° +20n + 16 ~ 4 n’ On>)
7n? + 100 n*3 + 56 ~ 7 n? O®?)
Yen’ — hn? + V3 n ~ Y6 n3 O?)

N J
Y

discard lower-order terms
(e.g., n = 1,000: 166.67 million vs. 166.17 million)

Rationale.
 When n is large, lower-order terms are negligible.

« When n is small, we don’t care.

formal definitions

involve limits

n6 —n?2+n/3

Leading-term approximation

28



Common order-of-growth classifications

order of

growth

typical code framework

description

example

T(2n)/ T(n)

O(1)

O(log n)

On)

O(n log n)

O(n?)

O(n?>)

O02"

LY

\ 4

i |

)

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

for (int i =n; 1>0; 1 /=2)

{ ... }

for (int 1 = 0; 1 <
{ ... }

n; 1++)

see mergesort lecture

for (int 1 =0; 1 < n; 1++)
for (int j = 0; j < n; j++)
{ ... 1}

for (Aint 1 =0; 1 < n; 1++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
{ ... }

see combinatorial search lecture

statement

divide
in half

single
loop

divide and

conquer

double
loop

triple
loop

exhaustive
search

add two
numbers

binary
search

find the

maximum

mergesort

check
all pairs

check
all triples

check
all subsets

211

29



Example: 2-Sum

Q. Approximately how many array accesses as a function of input size n?

1nt count = 0;
for (Aint 1 = 0; 1 < n; 1++)
for (Aint J = 1+1; J < n; J++)
1f (al[1] + a[j] == 0) < “inner loop”
count++;

O0+1+2+...+4(n—1)

A. ~ n?array accesses.

30



Example: 3-Sum

Q. Approximately how many array accesses as a function of input size n?

int count = O;
for (int 1 =05 1 < n; 1++)
for (int j = i+1; j < n; j++)
for (int k = J+1; k < n; k++)
if (alil + a[j] + alk] == 0) < ‘inner loop”
count++3

n
A. ~% n?array accesses. <3> N

Bottom line. Use cost model and asymptotic notation to simplify analysis.

31



Some useful discrete sums and approximations

Triangular sum. 1+24+3+...+n ~ §n2
_ 1 1 1 "]
Harmonic sum. 1 4 | ...+ —  ~ —dx = Inn
2 3 n o1 X

Geometric sum. 1+24+44+8+...+4n = 2n—1

T

n a power of 2

32



Analysis of algorithms: quiz 3

How many array accesses as a function of n?

1nt count = O;
for (int 1 =0; 1 < n; 1++)
for (int j = i+1; j < n; Jj++)
for (Aint k = 1; k <= n; k = k*2)
it (a[1] + al[j] >= al[k])
count++;

A. ~n?log,n
B. ~3/2 n’log,n
C. ~112n3

D. ~32n?

33



Analysis of algorithms: quiz 4

What is order of growth of running time as a function of n?

int count = O;
for (Aint1 =n; 1 >=1;1=1/2)
for (int j = 1; J <= 1; J++)

count++; < “inner loop”
A. Om)
B. ©O(nlogn)
C. 0Om?>

D. O@2n

34
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Basics

Bit. O or 1. NIST most computer scientists
Byte. 8 bits. l l

Megabyte (MB). 1 million or 2%° bytes.
Gigabyte (GB). 1 billion or 23° bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

N\

some JVMs “compress” ordinary object
pointers to 4 bytes to avoid this cost

36



Typical memory usage for primitive types and arrays

boolean boolean|] ln + 24 <
byte 1 int[] 4n + 24
char 2 doublel[] 8n + <
nt 4 one-dimensional arrays (length n)
float 4
lTong 8
double 8
boolean[][] ~1n?
primitive types
int[][] ~4 n?
double[][] ~ 8 n?

two-dimensional arrays (n-by-n)

wasteful
(but ~ 36n in Python 3)

array overhead = 24 bytes

37



Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Round up memory of each object to be a multiple of 8 bytes.

Ex 1. Each Date object uses 32 bytes of memory.

public class Date

{
private int day; object
orivate i1nt month; overhead
orivate i1nt year;

} day
month
year
padding

=,

1nt
alues

16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)

32 bytes

38



Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF object use as a function of n ?

A.
B.
C.

D.

~4 n bytes
~ 8 n bytes
~4 n? bytes

~ 8 n? bytes

public class WeightedQuickUnionUF

{

private int[] parent;
private int[] size;
private int count;

public WeightedQuickUnionUF(int n)
{

parent = new int[n];

size = new 1nt[n];

count = 0;

for (int 1 = 0; 1 < n; 1++)
parent|[1] = 1;

for (int 1 = 0; 1 < n; 1++)
sizel1] = 1;

39



Turning the crank: summary

Empirical analysis.
« Execute program to perform experiments.
 Assume power law.
 Formulate a hypothesis for running time.

 Model enables us to make predictions.

Mathematical analysis.
* Analyze algorithm to count frequency of operations.
» Use tilde and big-Theta notations to simplify analysis.

 Model enables us to explain behavior.

This course. Learn to use both.

|lg n ]

> [n/2" h ~ n

h=0

41



“ It is convenient to have a measure of the amount of work involved in a

computing process, even though it be a very crude one. We may count up

the number of times that various elementary operations are applied in the

whole process and then given them various weights.” — Alan Turing (1947)
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