
COS 226 Algorithms and Data Structures Spring 2023

Midterm

This exam has 10 questions worth a total of 60 points. You have 80 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: # McCosh 50 # McCosh 62 # Other

P01 P02 P02A P03 P03A P03B P04 P04A P05

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name and NetID; fill in the bubble
for your exam room and the precept in which you are officially registered; write and sign the
Honor Code pledge.

2. Memory. (5 points)

Consider the following implementation of a BST (with int keys and double values):

public class BST {

private Node root; // root node

private int n; // number of key-value pairs

private static class Node {

private int key; // key

private double value; // link to parent

private int count; // number of nodes in subtree

private Node left; // left subtree

private Node right; // right subtree

}

...

}

Use our 64-bit memory cost model to answer the following two questions:

(a) How much memory does each Node object use? Count all memory allocated when a
Node object is constructed.

Write your answer in the box below.

bytes

(b) How much memory does a BST object use as a function of the number n of key–value
pairs in the BST? Count all referenced memory.

Use tilde notation to simplify your answer and write it in the box below.

∼ bytes

COS 226 MIDTERM, SPRING 2023 3

3. Data structures. (6 points)

(a) Consider the following parent-link representation of a weighted quick union (link-by-size)
data structure.

Midterm, Spring 2023: Union Find

4 5 4 5 ? 5 2 5 8 5

0 1 2 3 4 5 6 7 8 9

1

5
4

27

parent[]

039

6

8

Which of the following values could be parent[4]?

Fill in all checkboxes that apply.

0 1 2 3 4 5 6 7 8 9

4 PRINCETON UNIVERSITY

(b) Consider the following binary heap representation of a maximum-oriented priority queue,
with pq[0] unused.

Midterm, Spring 2023 2020

– 99 88 55 55 77 33 11 44 66 11

binary heap

1 2 3 4 5 6 7 8 9 100

pq[]

35

30 15

25 40

50

65

20

– 65 50 35 ? 30 20 15 25 40

0 1 2 3 4 5 6 7 8 9

pq[]

Which of the following values could be pq[4]?

Fill in all checkboxes that apply.

20 25 30 35 40 45 50 55 60 65

COS 226 MIDTERM, SPRING 2023 5

4. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below.

Match each algorithm by writing its letter in the box under the corresponding column.
Use each letter exactly once.

71 13 13 15 15 71 13

24 24 15 17 17 68 15

51 51 17 24 24 58 17

83 31 20 30 30 66 20

92 68 24 51 48 57 24

58 58 29 52 51 52 29

90 29 30 58 52 51 30

98 20 31 71 58 32 31

15 15 32 83 66 55 32

30 30 48 90 71 15 48

17 17 51 92 75 29 51

52 52 52 98 77 30 52

75 57 75 13 83 20 55

77 55 77 32 90 17 57

48 48 90 48 92 48 58

66 66 66 66 98 24 66

32 32 92 75 32 31 68

13 71 71 77 13 13 71

55 77 55 55 55 75 75

57 75 57 57 57 77 77

20 98 83 20 20 83 83

29 90 58 29 29 90 90

68 92 68 68 68 92 92

31 83 98 31 31 98 98

A G

A. Original array

B. Selection sort

C. Insertion sort

D. Mergesort
(top-down)

E. Quicksort
(standard, no shuffle)

F. Heapsort

G. Sorted array

6 PRINCETON UNIVERSITY

5. Analysis of algorithms and sorting. (6 points)

Consider an array that contains n Bs, followed by 2n As, followed by n Bs, where n is a power
of 2. For example, here is the array when n = 4:

B B B B A A A A A A A A B B B B

How many compares does each sorting algorithm (standard algorithm, from the textbook)
make as a function for n? Note that the length of the array is 4n, not n.

For each sorting algorithm, fill in the best matching bubble.

(a) Selection sort.

#
∼ 1

2n
2 ∼ n2 ∼ 2n2 ∼ 4n2 ∼ 8n2

(b) Insertion sort.

#
∼ 1

2n
2 ∼ n2 ∼ 2n2 ∼ 4n2 ∼ 8n2

(c) 3-way quicksort.

#
∼ 4n ∼ 6n ∼ n log2 n ∼ 4n loge n ∼ 4n2

COS 226 MIDTERM, SPRING 2023 7

6. Left-leaning red–black BSTs. (6 points)

The following BST that satisfies perfect black balance, but violates the color invariants:

Midterm, Spring 2023

5

1

12

14

8

red link

6

26

18

15

3613

3022

19 24

Give a sequence of 4 elementary operations that restores the color invariants.

operation 1 operation 2 operation 3 operation 4

key

color flip # # # #
rotate left # # # #
rotate right # # # #

Examples of elementary operations (for reference):

Midterm, Spring 2017

8

3
8 rotate right

T3
3

8
3 rotate left

3

81

3 color flip

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4Midterm, Spring 2017

8

3
8 rotate right

T3
3

8
3 rotate left

3

81

3 color flip

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

8 PRINCETON UNIVERSITY

7. Properties of algorithms and data structures. (8 points)

Determine the minimum and maximum value of each quantity as a function of n. Assume
that each algorithm is the standard version from the textbook.

For each quantity on the left, write the two letters corresponding to its minimum and maximum
values. You may use each letter once, more than once, or not at all.

min max

Number of key compares to binary search for a
key in a sorted array that contains n keys.

Number of key compares to delete-the-maximum
in a ternary (3-way) heap that contains n keys.

Number of key compares to insert a key–value
pair into a binary search tree that contains n
key–value pairs.

Number of key compares to insert a key–value
pair into a 2–3 search tree that contains n
key–value pairs.

A. Θ(1)

B. ∼ 1
3 log3 n

C. ∼ 1
2 log2 n

D. ∼ log3 n

E. ∼ log2 n

F. ∼ 2 log3 n

G. ∼ 2 log2 n

H. ∼ 3 log3 n

I. ∼ 3 log2 n

K. Θ(n)
.

COS 226 MIDTERM, SPRING 2023 9

8. Why did we do that? (8 points)

For each design element below, identify whether it was an important choice (e.g., for correct-
ness, performance, or some other useful property) or whether it was primarily an arbitrary
choice.

For each design element on the right, fill in the best matching bubble on the left.

Important Arbitrary

#
When implementing a queue with a singly linked list, implement
enqueue by adding a new node after the last node in the linked
list (instead of before the first node).

#
When finding the index of the smallest remaining element
during selection sort, choose the smallest index of such an
element if there are ties (instead of the largest index).

When computing the index of the middle element in binary
search, use (lo + hi) >>> 1 (instead of (lo + hi) / 2).

#
When comparing two equal keys during mergesort, copy the
element from the the left subarray (instead of the one from the
right subarray).

#
When 2-way partitioning a subarray during quicksort, stop both
the left and right scans on equal keys (instead of skipping over
equal keys).

When quicksorting an array, recursively sort the left subarray
before the right subarray (and not after the right subarray).

#
When inserting a key–value pair into a 2–3 tree and splitting a
temporary 4-node, move the middle key to its parent node
(instead of moving the smallest key to its parent node).

When inserting a key–value pair into a left-leaning red–black
BST, color the newly created node red (instead of black).

10 PRINCETON UNIVERSITY

9. Iteration. (5 points)

Consider a resizing-array implementation of a queue, maintaining the elements in the array
a[]; the index of the first item (least recently added) in the queue first; the index to one
beyond the last item in the queue last; and the number of items in the queue n.

last first

a[] dream that I have a

0 1 2 3 4 5 6 7

null null null

n = 5

Complete the implementation of the following iterator.

private class MyIterator implements Iterator<Item> {

 private int i = ;

 public boolean hasNext() {

 return < ;

 }

 public Item next() {

 Item item = a[%];

 i++;

 return item;

 }

}

1

4

2

A. 0

B. 1

C. n

D. first

E. last

F. a.length

G. i

H. (i + first)

I. (i + last)
5

3

For each numbered oval above, write the letter of the corresponding expression on the right in
the space provided. You may use each letter once, more than once, or not at all.

1 2 3 4 5

COS 226 MIDTERM, SPRING 2023 11

10. Data-type design. (10 points)

Design a data type to implement a middle queue. A middle queue supports adding an item
to either the front or back, along with removing (and returning) the item in the middle. (If
there are an even number of items in the queue, remove the middle item closest to the front.)

Midterm, Spring 2023: Middle Queue

public class MiddleQueue<Item>

MiddleQueue() create an empty middle queue

void addFront(Item item) add the item to the front of the queue

void addBack(Item item) add the item to the back of the queue

Item removeMiddle()
remove and return the item in the middle of the
queue (midway between the front and back)

Here are the performance requirements:

• The constructor and all instance methods must take Θ(1) time in the worst case.

• The amount of memory to store n items must be Θ(n), where n is the number of items
in the queue.

• Partial credit for either Θ(logn) time in the worst case or Θ(1) amortized time.

Here is an example:

MiddleQueue<Integer> queue = new MiddleQueue<>(); // []

queue.addBack("A"); // [A]

queue.addBack("B"); // [A B]

queue.addBack("C"); // [A B C]

queue.addBack("D"); // [A B C D]

queue.addBack("E"); // [A B C D E]

queue.removeMiddle(); // [A B D E] => C

queue.addFront("F"); // [F A B D E]

queue.removeMiddle(); // [F A D E] => B

queue.removeMiddle(); // [F D E] => A

Your answer will be graded for correctness, efficiency, and clarity (but not Java syntax). If
your solution relies upon an algorithm or data structure from the course, do not reinvent it;
simply describe how you are applying it.

12 PRINCETON UNIVERSITY

(a) Using Java code, declare the instance variables (along with any supporting nested classes)
that you would use to implement MiddleQueue. You may use any of the data types that
we have considered in this course (either algs4.jar or java.util versions). You may
also make modifications to these data types; if you do so, describe the modifications.

public class MiddleQueue<Item> {

(b) Draw the underlying data structures (such as resizing arrays, linked lists, or binary trees)
for a middle queue containing the following seven items, inserted at the back (in that
order): A, B, C, D, E, F, G. For linked data structures, draw all links.

COS 226 MIDTERM, SPRING 2023 13

(c) Give a concise English description of your algorithm for implementing addFront().

(d) Give a concise English description of your algorithm for implementing addBack().

(e) Give a concise English description of your algorithm for implementing removeMiddle().

14 PRINCETON UNIVERSITY

This page is intentionally blank. You may use this page for scratch work.

