1. Memory.

$\sim 48 n$ bytes
Each Node object requires 48 bytes: 16 (object overhead) +16 (two references) +8 (double) +4 (int) +4 (padding). In total the n Node objects consume $48 n$ bytes.

2. Five sorting algorithms.

0 original array
5 quicksort (after first partition)
1 selection sort (after 12 iterations)
3 mergesort (just before left half of the array is sorted)
2 insertion sort (after 16 iterations)
4 heapsort (after heap construction phase and putting 6 largest keys into place)
6 sorted array

3. Analysis of algorithms.

(a) $\sim 2 n^{2}$

Selection sort makes $\sim \frac{1}{2} m^{2}$ compares to sort any array of length m. Here, $m=2 n$.
(b) $\sim n^{2}$

Each integer i in the right half is inverted with with $n-i$ integers in the left half and the same $n-i$ integers in the right half. So, the number of inversions is

$$
0+2+4+\ldots+2(n-1) \sim n^{2}
$$

The number of compares in insertion sort is always within n of the number of inversions.
(c) $\sim n \log _{2} n$

Recall that the best case for a merge happens when all of the keys in one subarray are larger than all of the keys in the other subarray. Sorted arrays always result in best-case merges, as do reverse-sorted arrays. As a result, sorting the left half (a sorted array of length n) takes $\frac{1}{2} n \log _{2} n$ compares and sorting the right half (a reverse sorted array of length n) takes $\frac{1}{2} n \log _{2} n$ compares. Merging them together takes an extra $2 n-1$ compares.

With tilde notation, be sure to include the leading coefficient and the base of the logarithm and to discard lower-order terms.

4. Binary heaps.

(a) 361416
(b) 456791314

5. Red-black BSTs.

22 color flip $\rightarrow 18$ rotate left $\rightarrow 24$ rotate right $\rightarrow 22$ color flip $\rightarrow 14$ rotate left

6. Data structure and algorithm properties.

(a) n^{4}

Each computational experiment involves opening about $0.593 n^{2}$ sites, where 0.593 is the percolation threshold. Opening a site (and checking whether the system percolates) takes a constant number of union (and find) operations. Since there are n^{2} sites, the quick-find data structure has n^{2} elements. So, each find operation makes 1 array access and each union operation makes about n^{2} array accesses.
Even in the worst case, if $0.593 n^{2}$ sites are opened, a constant fraction of them will have one (or more) open neighbors, each of which triggers a union operation.
(b) n

The amortized number of array accesses per operation is bounded by a some constant $c>0$. So, starting from an initially empty data randomized queue, any sequence of n operations makes at most cn array accesses.
(c) $\log n$

The range count requires two (deluxe) binary searches in a sorted array of length n.
(d) exponential

The A^{*} algorithm with the Manhattan priority function is incapable of solving even some 5 -by- 5 puzzles in a reasonable amount of time.
(e) $n \log n$

Inserting a sequence of n keys in ascending order into a binary heap takes $\sim n \log _{2} n$ compares. (Each insert and delete-the-max operation makes at most $2 \log _{2} n$ compares, so no sequence of n operations makes more than $2 n \log _{2} n$ compares.)
(f) $n \log n$

The height of any binary tree on n nodes is at least $\log _{2} n$.
(g) n^{2}

Consider a sequence of n insert operations in which each of the n keys has the same hash code.

7. System sort.

$\left.\begin{array}{llcr} & \text { insertion sort }\end{array} \begin{array}{c}\text { dual-pivot } \\ \text { quicksort }\end{array}\right]$ Timsort

8. Duplicate in two arrays.

The key idea is to sort the smaller array and use binary search to check for duplicates.

1. Heapsort a [] .
2. For each j, binary search for $b[j]$ in $a[]$. If a search hit, then return $b[j]$ since it appears in both arrays.

Heapsorting a [] takes $m \log m$ time and uses constant extra space. Binary searching for b [j] in a [] takes $\log m$ time (for a total of $n \log m$ time). Standard binary search (nonrecursive) uses only constant extra space.

Some alternative approaches that don't meet the performance requirements:

- Using mergesort instead of heapsort (linear extra space).
- Using quicksort instead of heapsort (logarithmic extra space for the recursion and does not achieve a linearithmic running time in the worst case).
- Using a red-black BST or a hash table (linear extra memory).
- Heapsorting both a[] and b[] and then checking for duplicates with a merge operation $(n \log n$ time instead of $n \log m)$.

9. Data structure design.

The main idea is to maintain a hash table (such as java.util.HashMap) for each list, with key $=$ integer and value $=$ number of times the integer appears in the list. Also maintain a duplicate counter that counts the number of integers that appears in both lists.

- Increment the duplicate counter whenever
- an integer is added to a list for the first time and
- it also appears in the other list
- Decrement the duplicate counter whenever
- an integer is deleted from a list and
- it is the last such integer in the list and
- it appears in the other list

```
public class Duo {
    private HashMap<Integer, Integer> list1 = new HashMap<>();
    private HashMap<Integer, Integer> list2 = new HashMap<>();
    private int duplicates = 0;
    public void addToList1(int x) {
        if (!list1.containsKey(x)) {
            list1.put(x, 1);
            if (list2.containsKey(x)) duplicates++;
        }
        else list1.put(x, list1.get(x) + 1);
    }
    public void deleteFromList1(int x) {
        if (list1.get(x) == 1) {
            list1.remove(x);
            if (list2.containsKey(x)) duplicates--;
        }
        else list1.put(x, list1.get(x) - 1);
    }
    public boolean hasDuplicate() {
        return duplicates > 0;
    }
}
```

Without deletion, it suffices to maintain a hash set (such as java.util.HashSet) for each list containing the set of integers in that list. Also, maintain a boolean variable that indicates whether there exists an integer that appears in both lists.

- Set the boolean variable to true whenever
- an integer is added to a list for the first time and
- that integer also appears in the other list

