
COS 226 Algorithms and Data Structures Spring 2023

Final

This exam has 14 questions worth a total of 100 points. You have 180 minutes.

Instructions. This exam is preprocessed by computer. Write neatly, legibly, and darkly. Put all
answers (and nothing else) inside the designated spaces. Fill in bubbles and checkboxes completely:
 and . To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a one page reference
sheet (8.5-by-11 paper, both sides, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton’s Honor Code. Discussing the contents of this
exam before the solutions are posted is a violation of the Honor Code.

Please complete the following information now.

Name:

NetID:

Exam room: # McCosh 46 # McCosh 50 # Other

P01 P02 P02A P03 P03A P03B P04 P04A P05

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

1. Initialization. (1 point)

In the spaces provided on the front of the exam, write your name and NetID; fill in the bubble
for your exam room and the precept in which you are officially registered; write and sign the
Honor Code pledge.

COS 226 FINAL, SPRING 2023 3

2. Empirical running time. (6 points)

Suppose that you observe the following running times (in seconds) for a program on graphs
with V vertices and E edges.

E

100 200 400 800

100 0.25 0.5 1.0 2.0

V 200 2.0 4.0 8.0 16.0

400 16.0 32.0 64.0 128.0

800 128.0 256.0 512.0 1024.0

(a) Estimate the running time of the program (in seconds) for a graph with V = 1,600
vertices and E = 1,600 edges.

#
2,000 4,000 8,000 16,000 32,000

(b) What is the order of growth of the running time as a function of both V and E?

#
Θ(V 3 +E) Θ(V +E3) Θ(V 3E) Θ(V E3) Θ(V 2E2)

4 PRINCETON UNIVERSITY

3. Analysis of algorithms. (6 points)

Determine the order of growth of the running time of each of the following code fragments
as a function of V and E, where V and E are the number of vertices and edges in graph G,
respectively. Assume the standard adjacency-lists representation.

(a) int count = 0;

int V = G.V();

for (int v = 0; v < V; v++)

for (int w = 0; w < v; w++)

count++;

#
Θ(V) Θ(E) Θ(V logV) Θ(V 2) Θ(V 2 logV)

(b) int count = 0;

int V = G.V();

for (int v = 0; v < V; v++)

for (int w : G.adj(v))

count++;

#
Θ(V) Θ(E) Θ(E + V) Θ(V 2) Θ(V E)

(c) int count = 0;

int V = G.V();

for (int v = V; v >= 1; v = v / 2)

for (int w = 1; w <= v; w++)

count++;

#
Θ(V) Θ(E) Θ(V logV) Θ(V 2) Θ(V 2 logV)

COS 226 FINAL, SPRING 2023 5

4. String sorts. (5 points)

The column on the left contains the original input of 24 strings to be sorted; the column on
the right contains the strings in sorted order; the other 5 columns contain the contents at
some intermediate step during one of the 3 radix-sorting algorithms listed below. Match each
algorithm by writing its letter in the box under the corresponding column.

You may use each letter once, more than once, or not at all.

0 3543 1100 2346 1100 1100 1100 1100

1 2346 6501 1664 1491 1864 1491 1491

2 9397 3006 1100 1532 1491 6501 1532

3 8686 5609 1563 1563 1532 1532 1563

4 1100 5316 1719 1664 1719 7092 1664

5 3239 3117 1532 1719 1563 3543 1719

6 9458 3419 1864 1864 1664 1563 1864

7 7868 1719 1491 2346 2346 1864 2346

8 5609 5629 3239 3543 3543 7584 3006

9 5316 1532 3419 3239 3239 1664 3117

10 3006 3239 3006 3006 3006 2346 3239

11 1864 3543 3117 3419 3419 8686 3419

12 1491 2346 3543 3117 3117 5316 3543

13 3419 4149 4149 4149 4149 3006 4149

14 4149 9458 7584 5609 5609 9397 5316

15 7584 1563 5316 5316 5316 3117 5609

16 1532 1864 6501 5629 5629 9458 5629

17 6501 1664 5609 6501 6501 7868 6501

18 1719 7868 7092 7868 7868 3239 7092

19 7092 7584 7868 7584 7584 5609 7584

20 1563 8686 5629 7092 7092 3419 7868

21 5629 1491 9458 8686 8686 4149 8686

22 3117 7092 8686 9397 9397 1719 9397

23 1664 9397 9397 9458 9458 5629 9458

A E

A. Original input

B. LSD radix sort

C. MSD radix sort

D. 3-way radix quicksort (no shuffle)

E. Sorted

6 PRINCETON UNIVERSITY

5. Depth-first search. (8 points)

Run depth-first search on the following digraph, starting from vertex 0. Assume the adjacency
lists are in sorted order: for example, when iterating over the edges leaving vertex 0, consider
the edge 0→2 before either 0→4 or 0→6.

46

20

3

9

7

1

8

5

start from here

preorder: 0 2 5 4 8 6 7 3 1 9
postorder: 5 2 8 4 1 3 9 7 6 0

Final, Spring 2023

(a) List the 10 vertices in DFS preorder.

0

(b) List the 10 vertices in DFS postorder.

0

(c) Is the reverse of the DFS postorder in (b) a topological order for this digraph?

#
yes no

COS 226 FINAL, SPRING 2023 7

6. Minimum spanning trees. (8 points)

Consider the following edge-weighted graph.

s

20

Final, Spring 2023

60

70

0

100

130 110

90

120

Kruskal: 0 10 20 30 50 70 110 120
Prim: 10 20 0 30 50 70 120 110

150

50

30

140

8040
10

(a) List the weights of the MST edges in the order that Kruskal’s algorithm adds them to
the MST.

(b) List the weights of the MST edges in the order that Prim’s algorithm adds them to the
MST. Start Prim’s algorithm from vertex s.

8 PRINCETON UNIVERSITY

7. Shortest paths. (8 points)

Suppose that you are running Dijkstra’s algorithm in the following edge-weighted digraph,
with source vertex s = 0. Just prior to relaxing vertex 6, the distTo[] array is as follows:

4

0

6

2

5

1

Final, Spring 2023

6

v distTo[]

0 0.0

1 50.0

2

3 43.0

4 41.0

5 35.0

6 38.0

7 36.0

7

3

2

4

edge
weight

(a) Which vertices (including vertex 6) are currently in the priority queue?
Mark all that apply.

0 1 2 3 4 5 6 7

(b) Which vertex will Dijkstra’s algorithm relax immediately after vertex 6?

#
0 1 2 3 4 5 6 7

cannot be
determined

(c) Which is the weight of edge 7→3 ?

#
1 2 3 4 5 6 7 8

cannot be
determined

COS 226 FINAL, SPRING 2023 9

8. Maxflows and mincuts. (8 points)

Consider the following flow network and maximum flow f .

Final, Spring 2023

1 / 13
11 / 16

0 / 4

9 / 9

14 / 3010 / 14F

flow f capacity

A

4 / 73 /
5 10 / 14

10 / 15

15 / 1714 / 14 I

E

J

20 / 2010 / 10

10 / 10

C

min cut: { A, B, F, G, H }
max flow value = 31

8 / 8

B

H

D

source

target

G

6 / 6

(a) What is the value of the flow f?

#
20 31 32 36 37

(b) What is the capacity of the cut {A,B,C}?

#
31 42 50 63 76

(c) Which vertices are on the source side of a minimum cut? Mark all that apply.

A B C D E F G H I J

(d) Suppose that the capacity of edge B→C is increased from 9 to 10. Which of the following
paths would become augmenting paths with respect to flow f? Mark all that apply.

A→ G→ B → C → I →D → E → J

A→ B → C →D → E → J

A→ G→ B → C → I → J

A→G→H→C→I→J

none of the above

10 PRINCETON UNIVERSITY

9. Data structures. (12 points)

(a) Suppose that the following keys are inserted into an initially empty linear-probing hash
table, but not necessarily in the order given,

key hash

A 3

B 4

C 4

D 0

E 1

Which of the following hash tables could arise? Assume that the initial size of the hash
table is 5 and that it neither grows nor shrinks.

Fill in all checkboxes that apply.

0 1 2 3 4

A B C D E

0 1 2 3 4

D B C E A

0 1 2 3 4

C D E A B

COS 226 FINAL, SPRING 2023 11

(b) Consider the following 2d-tree:

Final, Spring 2023

(9, 5)

(5, 9)

(4, 2) (6, 12)

(7, 15)

(x, y)

(14, 9)

(16, 1)

(20, 7)

(11, 12)

(10, 14)

6 <= x <= 9
9 <= y <= 15

Which of the following points could correspond to (x, y)?

Fill in all checkboxes that apply.

(5, 10) (7, 10) (7, 16) (8, 8) (8, 14) (10, 10)

12 PRINCETON UNIVERSITY

(c) Consider the following ternary search trie, where the question mark represents an un-
known digit:

Final, Spring 2023

2

2 6

2

5

6

?

6

1

8

2

60

6 7

26

4

6 4

91

5

3

Which of the following string keys are (or could possibly be) in the TST?

Fill-in all checkboxes that apply.

1 226 236 36 56 646 76

81 822 8225 826 8269 869 96

COS 226 FINAL, SPRING 2023 13

10. Data compression. (8 points)

For each of the following data compression algorithms, identify the worst-case compression
ratio. Recall that the compression ratio is the number of bits in the encoded message divided
by the number of bits in the original message.

For each algorithm on the left, write the letter of the best-matching term on the right. You
may use each letter once, more than once, or not at all.

Run-length coding with 8-bit counts.

Huffman coding over the extended ASCII alphabet
(R = 256).

LZW compression over the extended ASCII alphabet
(R = 256), with 12-bit codeword.

Burrows–Wheeler compression over the extended ASCII
alphabet (R = 256). This includes the Burrows–Wheeler
transform, move-to-front encoding, and Huffman coding.

A. ∼ 1

B. ∼ 3/2

C. ∼ 2

D. ∼ 4

E. ∼ 8

F. ∼ 12

G. ∼ 16

H. ∼ 256

14 PRINCETON UNIVERSITY

11. Burrows–Wheeler transform. (5 points)

(a) What is the Burrows–Wheeler transform of the following string?

A N A B E L L A

integer index

core

Feel free to use this grid for scratch work.

(b) Consider all strings whose core Burrows–Wheeler transform (i.e., the Burrows–Wheeler
transform excluding the integer index) is the same as the core Burrows–Wheeler trans-
form of

A N A B E L L A

In the space below, write the lexicographically smallest such string (i.e., the first one
that would appear alphabetically).

COS 226 FINAL, SPRING 2023 15

12. DFS postorder. (5 points)

Consider the following partial implementation for computing the DFS postorder in a digraph:

private void dfs(Digraph G, int v) {

 marked[v] = true;

 for (int w : G.adj(v))

 if (!marked[w])

 dfs(G, w);

 postorder.enqueue(v);

}

Final, Spring 2023

1

2

3

4

5

public PostorderDFS(Digraph G) {

 marked = new boolean[G.V()];

 postorder = new Queue<Integer>();

 for (int v = 0; v < G.V(); v++)

 if (!marked[v])

 dfs(G, v);

}

A. dfs(G, v);

B. dfs(G, w);

C. marked[v] = true;

D. marked[w] = true;

E. postorder.enqueue(v);

F. postorder.enqueue(w);

G. if (!marked[v])

H. if (!marked[w])

I. for (int w : G.adj(v))

J. for (int v = 0; v < G.V(); v++)

For each numbered oval above, write the letter of the corresponding code fragment on the right
in the space provided. Use each letter at most once.

1 2 3 4 5

16 PRINCETON UNIVERSITY

13. Shortest tiger path. (10 points)

Consider a graph in which each vertex is colored black or orange. A tiger path is a path that
contains exactly one edge whose endpoints have opposite colors.

Shortest tiger path problem. Given an undirected graph G and two vertices s and t, find
a tiger path between s and t that uses the fewest edges (or report that no such path exists).

An example. Consider the graph G below with s = 0 and t = 6.

• The shortest path between s and t is 0–4–5–6, but it is not a tiger path.

• The shortest tiger path between s and t is 0–1–2–3–6.

Final, Spring 2023

0

1

4

2 3

5 6

s

t

G

Goal. Formulate the shortest tiger path problem as a traditional (unweighted) shortest path
problem in a directed graph. Specifically, define a digraph G′, source s′, and destination t′

such that the length of the shortest path from s′ to t′ in G′ is always equal to the length of
the shortest tiger path between s and t in G. For simplicity, you may assume that s is black
and t is orange.

Performance requirements. For full credit, the number of vertices in G′ must be Θ(V)
and the number of edges must be Θ(E), where V and E are the number of vertices and edges
in G, respectively.

Your answer will be graded for correctness, efficiency, and clarity.

COS 226 FINAL, SPRING 2023 17

Briefly describe how to construct the digraph G′, s′, and t′ from G, s, and t.
Your description should work for any graph G, not just the one on the facing page.

Draw the digraph G′ corresponding to graph G on the facing page. Label s′ and t′.

18 PRINCETON UNIVERSITY

14. Necklaces. (10 points)

A necklace consists of a sequence n beads, each of which is either orange (0) or black (1).
In this question, we have a set of m necklaces and are interested in identifying a common
sequence of beads that appears at the end of many necklaces.

The problem. Given a set of m necklaces, each containing n beads, and a positive integer
k ≤ n, design an algorithm to find the most popular ending sequence of length k.

An example. Consider the following m = 4 necklaces, each containing n = 5 beads.

Final, Spring 2023

bead 1

necklace 1

necklace 2

necklace 3

necklace 4

bead 2 bead 3 bead 4 bead 5

The most popular ending sequences for various values of k are as follows:

• k = 1: black (3 necklaces end with a black bead).

• k = 2: black–black (3 necklaces end with two black beads).

• k = 3: orange–black–black (2 necklaces end with this sequence).

• k = 4: black–orange–black–black (2 necklaces end with this sequence).

• k = 5: orange–orange–orange–black–orange (1 necklace ends with this sequence).
There are three alternative answers.

Performance requirements. For full credit, the running time of your algorithm must be
be Θ(mn) in the worst case.

Your answer will be graded for correctness, efficiency, and clarity (but not Java syntax). If
your solution relies upon an algorithm or data structure from the course, do not reinvent it;
simply describe how you are applying it.

COS 226 FINAL, SPRING 2023 19

(a) Describe your algorithm for identifying a most popular ending sequence of length k.

(b) Draw a diagram of the underlying data structures (such as arrays, linked lists, or binary
trees) that your algorithm uses for the example input on the facing page. Show all
relevant information, including any links and auxiliary data.

20 PRINCETON UNIVERSITY

This page is intentionally blank. You may use this page for scratch work.

