
COS 226 Algorithms and Data Structures Spring 2015

Final Exam Solutions

1. Analysis of algorithms.

(a) 1160 = 128.9× 32

(b) ∼ 2104N .
Node class (2104 bytes): 16 (object overhead) + 8 (reference to val) + 8 (reference to
next[]) + 24 + 8R (array of R pointers) = 56 + 2048 = 2104.

2. Graph search.

(a) 0 9 3 4 5 2 7 8 6 1

(b) 0 9 3 2 1 7 6 8 4 5

3. Minimum spanning tree.

(a) • x ≤ 110 because x selected before 110

• y ≤ 80 because if y were greater than 80, then the edge B-H would be in the MST
instead of y.

• z ≥ 90; otherwise would be selected before A-F

(b) • x ≤ 130; otherwise G-H would be in MST

• y ≤ 80; otherwise B-H would be in MST

• z could be any value

4. Maximum flow.

(a) 32

(b) A G B H I D J

(c) 3

(d) A B F G H I

(e) B → C, I → J , H → D
A → G, G → H, and D → I are not edges that cross the mincut, so increasing their
capacity will have no effect on the value of the maxflow.

1

5. String sorting algorithms.

3. 3-way radix quicksort after the second partitioning step

2. MSD radix sort after the first call to key-indexed counting

3. 3-way radix quicksort after the first partitioning step

1. LSD radix sort after 2 passes

2. MSD radix sort after the second call to key-indexed counting

1. LSD radix sort after 1 pass

1. LSD radix sort after 3 passes

6. Substring search search.

(a)

0 1 2 3 4 5 6 7
A 0 0 3 0 0 3 7 0
B 0 0 0 0 0 0 0 8
C 1 2 2 4 5 6 2 4

(b) 4

hash(269xyz77) = 115 (mod 157)
hash(10000000) = 42 (mod 157)
69xyz778 = (269xyz77− 2 ∗ 10000000) ∗ 10 + 8

hash(69xyz778) = (269xyz77− 2 ∗ 10000000) ∗ 10 + 8 (mod 157)

= (115− 2 ∗ 42) ∗ 10 + 8 (mod 157)

= 4

7. Regular expressions.

Final, Spring 2015

((* | D) *)

0 2 3 4 5 6 7 8 9 10 11

B CA

1

((* | D) *)

0 2 3 4 5 6 7 8 9 10 11

B CA

1

(a) 0→ 1, 2→ 7, 2→ 9, 4→ 5, 5→ 4, 5→ 6, 6→ 8, 9→ 2, 9→ 10

(b) 2 3 4 5 6 7 8 9 10 11

2

8. LZW compression.

(a) B B A C B B C A C B B C A C B

(b)

i codeword

81 BB
82 BA
83 AC
84 CB
85 BBC
86 CA
87 ACB
88 BBCA

9. Burrows-Wheeler transform.

(a) 3
B B D A C A B C

i suffixes[i] t

0 A B A C B C D B

1 A C B C D B A B

2 B A B A C B C D

* 3 B A C B C D B A

4 B C D B A B A C

5 C B C D B A B A

6 C D B A B A C B

7 D B A B A C B C

(b) C D D B A A B B

i suffixes[i] t next[i]

0 A ? ? ? ? ? ? B 1

1 A ? ? ? ? ? ? A 3

2 B ? ? ? ? ? ? D 0

3 B ? ? ? ? ? ? A 4

4 B ? ? ? ? ? ? B 5

* 5 C ? ? ? ? ? ? B 7

6 D ? ? ? ? ? ? D 2

7 D ? ? ? ? ? ? C 6

3

10. Properties of problems.

(a) ii only

(b) i, iii, v

(c) iv

11. Properties of algorithms.

(a) i, ii, iii, v

(b) i, iii

(c) i, iii, v

12. Reductions.

(a) Color all vertices black, using the same edge-weighted digraph, source, and destination.

Final, Spring 2015

F

A B C

D

weight

2

9

99

5107

destination

source

E

1

4

3

F

A B C

D 2

9

99

5107

destination

source

E

1

4

3

(b) Create two copies of the digraph—G′ and G′′, replacing each edge v → w where w is an
orange vertex with an edge v′ → w′′. Also, include an artificial sink and connect t′ and
t′′ to the artificial sink (with zero-weight edges). The artificial sink is necessary because
the shortest Princeton path can use no orange vertices or the destination can be orange.

F'

A' B' C'

D'

2

9 99

5107

source

E'

1

4

3

F"

A" B" C"

D" 99

510

destination

E"

1

4

7

0

0

G'

G"

4

13. Algorithm design.

(a) Maintain a queue of integers, maintaining the total weight of all integers on the queue.

• add: enqueue the integer (and add the weight to the sum)

• remove: dequeue the integer (and subtract the weight from the sum)

To support all queue operations in constant time in the worst case, use a singly-linked
list.

public class StreamingSum {

private Node first, last;

private long total;

private static class Node {

private int weight;

private Node next;

}

...

}

(b) Use a combination of KMP substring search (modified to find all matches) and a StreamingSum
data type. To modify KMP to find all matches, we must include transitions from the
“accept” state in the same manner as for the intermediate states, so that we can detect
overlapping matches. Here is the modified KMP for ABAB.

99

Streaming sum (Final, Spring 2015)

public class StreamingSumpublic class StreamingSumpublic class StreamingSum

public StreamingSum() create an empty data structure

public void add(int weight) add the weight to the data structure

public void remove() remove the least-recently added weight

public int sum() sum of weights in data structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A B A B

A A A B A B A B B A B A A A B A B B B A B A B A B A B B

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3

19
22

21 18
15

18

text string s

weights

query string t

0 1 3 42A B A B

B

0 1

A

A

B 3 4

A

B

When the KMP is in state i the StreamSum data type will store the weights of the last
i characters.

• If the next character in the text matches the next character in the pattern, advance
to state i + 1 and add the corresponding weight to the StreamingSum data type.

• If the next character in the text does not match the next character in the pattern (or
if the DFA is in state M), retreat to state j, according to the KMP DFA. If j = 0,
remove all of the integers from the StreamingSum data type; otherwise, remove
i− j + 1 integers from the StreamingSum and add the corresponding weight to the
StreamingSum.

The overall running time is proportional to M + N .

• Building the KMP DFA takes time proportional to M .

• The total number of calls to methods in StreamingSum is at most 2N : the total
number of calls to add() is at most N ; the total number of calls to remove() is at
most the number of calls to add().

5

